PaddleX 支持统计模型推理耗时,需通过环境变量进行设置,具体如下:
PADDLE_PDX_INFER_BENCHMARK:设置为 True 时则开启 Benchmark,默认为 False;PADDLE_PDX_INFER_BENCHMARK_WARMUP:设置 warm up,在开始测试前,使用随机数据循环迭代 n 次,默认为 0;PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE: 设置随机数据的尺寸,默认为 224;PADDLE_PDX_INFER_BENCHMARK_ITER:使用随机数据进行 Benchmark 测试的循环次数,仅当输入数据为 None 时,将使用随机数据进行测试;PADDLE_PDX_INFER_BENCHMARK_OUTPUT:用于设置保存的目录,如 ./benchmark,默认为 None,表示不保存 Benchmark 指标;使用示例如下:
PADDLE_PDX_INFER_BENCHMARK=True \
PADDLE_PDX_INFER_BENCHMARK_WARMUP=5 \
PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE=320 \
PADDLE_PDX_INFER_BENCHMARK_ITER=10 \
PADDLE_PDX_INFER_BENCHMARK_OUTPUT=./benchmark \
python main.py \
-c ./paddlex/configs/object_detection/PicoDet-XS.yaml \
-o Global.mode=predict \
-o Predict.model_dir=None \
-o Predict.batch_size=2 \
-o Predict.input=None
在开启 Benchmark 后,将自动打印 benchmark 指标:
+----------------+-----------------+-----------------+------------------------+
| Component | Total Time (ms) | Number of Calls | Avg Time Per Call (ms) |
+----------------+-----------------+-----------------+------------------------+
| ReadCmp | 100.20136833 | 10 | 10.02013683 |
| Resize | 17.05980301 | 20 | 0.85299015 |
| Normalize | 45.44949532 | 20 | 2.27247477 |
| ToCHWImage | 0.03671646 | 20 | 0.00183582 |
| Copy2GPU | 12.28785515 | 10 | 1.22878551 |
| Infer | 76.59482956 | 10 | 7.65948296 |
| Copy2CPU | 0.39863586 | 10 | 0.03986359 |
| DetPostProcess | 0.43916702 | 20 | 0.02195835 |
+----------------+-----------------+-----------------+------------------------+
+-------------+-----------------+---------------------+----------------------------+
| Stage | Total Time (ms) | Number of Instances | Avg Time Per Instance (ms) |
+-------------+-----------------+---------------------+----------------------------+
| PreProcess | 162.74738312 | 20 | 8.13736916 |
| Inference | 89.28132057 | 20 | 4.46406603 |
| PostProcess | 0.43916702 | 20 | 0.02195835 |
| End2End | 0.27992606 | 20 | 0.01399630 |
| WarmUp | 5.37562728 | 5 | 1.07512546 |
+-------------+-----------------+---------------------+----------------------------+
在 Benchmark 结果中,会统计该模型全部组件(Component)的总耗时(Total Time,单位为“毫秒”)、调用次数(Number of Calls)、调用平均执行耗时(Avg Time Per Call,单位“毫秒”),以及按预热(WarmUp)、预处理(PreProcess)、模型推理(Inference)、后处理(PostProcess)和端到端(End2End)进行划分的耗时统计,包括每个阶段的总耗时(Total Time,单位为“毫秒”)、样本数(Number of Instances)和单样本平均执行耗时(Avg Time Per Instance,单位“毫秒”),同时,上述指标会保存到到本地: ./benchmark/detail.csv 和 ./benchmark/summary.csv:
Component,Total Time (ms),Number of Calls,Avg Time Per Call (ms)
ReadCmp,100.20136833190918,10,10.020136833190918
Resize,17.059803009033203,20,0.8529901504516602
Normalize,45.44949531555176,20,2.272474765777588
ToCHWImage,0.036716461181640625,20,0.0018358230590820312
Copy2GPU,12.28785514831543,10,1.228785514831543
Infer,76.59482955932617,10,7.659482955932617
Copy2CPU,0.3986358642578125,10,0.03986358642578125
DetPostProcess,0.4391670227050781,20,0.021958351135253906
Stage,Total Time (ms),Number of Instances,Avg Time Per Instance (ms)
PreProcess,162.74738311767578,20,8.137369155883789
Inference,89.28132057189941,20,4.464066028594971
PostProcess,0.4391670227050781,20,0.021958351135253906
End2End,0.279926061630249,20,0.013996303081512451
WarmUp,5.375627279281616,5,1.0751254558563232