client.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. #!/usr/bin/env python
  2. import argparse
  3. import sys
  4. from paddlex_hps_client import triton_request, utils
  5. from tritonclient import grpc as triton_grpc
  6. def ensure_no_error(output, additional_msg):
  7. if output["errorCode"] != 0:
  8. print(additional_msg, file=sys.stderr)
  9. print(f"Error code: {output['errorCode']}", file=sys.stderr)
  10. print(f"Error message: {output['errorMsg']}", file=sys.stderr)
  11. sys.exit(1)
  12. def main():
  13. parser = argparse.ArgumentParser()
  14. parser.add_argument("--file", type=str, required=True)
  15. parser.add_argument("--key-list", type=str, nargs="+", required=True)
  16. parser.add_argument("--file-type", type=int, choices=[0, 1])
  17. parser.add_argument("--no-visualization", action="store_true")
  18. parser.add_argument("--invoke-mllm", action="store_true")
  19. parser.add_argument("--url", type=str, default="localhost:8001")
  20. args = parser.parse_args()
  21. client = triton_grpc.InferenceServerClient(args.url)
  22. input_ = {"file": utils.prepare_input_file(args.file)}
  23. if args.file_type is not None:
  24. input_["fileType"] = args.file_type
  25. if args.no_visualization:
  26. input_["visualize"] = False
  27. output = triton_request(client, "chatocr-visual", input_)
  28. ensure_no_error(output, "Failed to analyze the images")
  29. result_visual = output["result"]
  30. for i, res in enumerate(result_visual["layoutParsingResults"]):
  31. print(res["prunedResult"])
  32. for img_name, img in res["outputImages"].items():
  33. img_path = f"{img_name}_{i}.jpg"
  34. utils.save_output_file(img, img_path)
  35. print(f"Output image saved at {img_path}")
  36. input_ = {
  37. "visualInfo": result_visual["visualInfo"],
  38. }
  39. output = triton_request(client, "chatocr-vector", input_)
  40. ensure_no_error(output, "Failed to build a vector store")
  41. result_vector = output["result"]
  42. if args.invoke_mllm:
  43. input_ = {
  44. "image": utils.prepare_input_file(args.file),
  45. "keyList": args.key_list,
  46. }
  47. output = triton_request(client, "chatocr-mllm", input_)
  48. ensure_no_error(output, "Failed to invoke the MLLM")
  49. result_mllm = output["result"]
  50. input_ = {
  51. "keyList": args.key_list,
  52. "visualInfo": result_visual["visualInfo"],
  53. "useVectorRetrieval": True,
  54. "vectorInfo": result_vector["vectorInfo"],
  55. }
  56. if args.invoke_mllm:
  57. input_["mllmPredictInfo"] = result_mllm["mllmPredictInfo"]
  58. output = triton_request(client, "chatocr-chat", input_)
  59. ensure_no_error(output, "Failed to chat with the LLM")
  60. result_chat = output["result"]
  61. print("Final result:")
  62. print(result_chat["chatResult"])
  63. if __name__ == "__main__":
  64. main()