client.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. #!/usr/bin/env python
  2. import argparse
  3. import sys
  4. from paddlex_hps_client import triton_request, utils
  5. from tritonclient import grpc as triton_grpc
  6. OCR_IMAGE_PATH = "./ocr.jpg"
  7. LAYOUT_IMAGE_PATH = "./layout.jpg"
  8. def main():
  9. parser = argparse.ArgumentParser()
  10. parser.add_argument("--file", type=str, required=True)
  11. parser.add_argument("--file-type", type=int, choices=[0, 1])
  12. parser.add_argument("--no-visualization", action="store_true")
  13. parser.add_argument("--url", type=str, default="localhost:8001")
  14. args = parser.parse_args()
  15. client = triton_grpc.InferenceServerClient(args.url)
  16. input_ = {"file": utils.prepare_input_file(args.file)}
  17. if args.file_type is not None:
  18. input_["fileType"] = args.file_type
  19. if args.no_visualization:
  20. input_["visualize"] = False
  21. output = triton_request(client, "table-recognition", input_)
  22. if output["errorCode"] != 0:
  23. print(f"Error code: {output['errorCode']}", file=sys.stderr)
  24. print(f"Error message: {output['errorMsg']}", file=sys.stderr)
  25. sys.exit(1)
  26. result = output["result"]
  27. for i, res in enumerate(result["tableRecResults"]):
  28. print(res["prunedResult"])
  29. for img_name, img in res["outputImages"].items():
  30. img_path = f"{img_name}_{i}.jpg"
  31. utils.save_output_file(img, img_path)
  32. print(f"Output image saved at {img_path}")
  33. if __name__ == "__main__":
  34. main()