video_classifier.cpp 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <glog/logging.h>
  15. #include <omp.h>
  16. #include <algorithm>
  17. #include <chrono> // NOLINT
  18. #include <fstream>
  19. #include <iostream>
  20. #include <string>
  21. #include <vector>
  22. #include <utility>
  23. #include "include/paddlex/paddlex.h"
  24. #include "include/paddlex/visualize.h"
  25. #if defined(__arm__) || defined(__aarch64__)
  26. #include <opencv2/videoio/legacy/constants_c.h>
  27. #endif
  28. using namespace std::chrono; // NOLINT
  29. DEFINE_string(model_dir, "", "Path of inference model");
  30. DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
  31. DEFINE_bool(use_trt, false, "Infering with TensorRT");
  32. DEFINE_bool(use_mkl, true, "Infering with MKL");
  33. DEFINE_int32(gpu_id, 0, "GPU card id");
  34. DEFINE_string(key, "", "key of encryption");
  35. DEFINE_int32(mkl_thread_num,
  36. omp_get_num_procs(),
  37. "Number of mkl threads");
  38. DEFINE_bool(use_camera, false, "Infering with Camera");
  39. DEFINE_int32(camera_id, 0, "Camera id");
  40. DEFINE_string(video_path, "", "Path of input video");
  41. DEFINE_bool(show_result, false, "show the result of each frame with a window");
  42. DEFINE_bool(save_result, true, "save the result of each frame to a video");
  43. DEFINE_string(save_dir, "output", "Path to save visualized image");
  44. int main(int argc, char** argv) {
  45. // Parsing command-line
  46. google::ParseCommandLineFlags(&argc, &argv, true);
  47. if (FLAGS_model_dir == "") {
  48. std::cerr << "--model_dir need to be defined" << std::endl;
  49. return -1;
  50. }
  51. if (FLAGS_video_path == "" & FLAGS_use_camera == false) {
  52. std::cerr << "--video_path or --use_camera need to be defined" << std::endl;
  53. return -1;
  54. }
  55. // Load model
  56. PaddleX::Model model;
  57. model.Init(FLAGS_model_dir,
  58. FLAGS_use_gpu,
  59. FLAGS_use_trt,
  60. FLAGS_use_mkl,
  61. FLAGS_mkl_thread_num,
  62. FLAGS_gpu_id,
  63. FLAGS_key);
  64. // Open video
  65. cv::VideoCapture capture;
  66. if (FLAGS_use_camera) {
  67. capture.open(FLAGS_camera_id);
  68. if (!capture.isOpened()) {
  69. std::cout << "Can not open the camera "
  70. << FLAGS_camera_id << "."
  71. << std::endl;
  72. return -1;
  73. }
  74. } else {
  75. capture.open(FLAGS_video_path);
  76. if (!capture.isOpened()) {
  77. std::cout << "Can not open the video "
  78. << FLAGS_video_path << "."
  79. << std::endl;
  80. return -1;
  81. }
  82. }
  83. // Create a VideoWriter
  84. cv::VideoWriter video_out;
  85. std::string video_out_path;
  86. if (FLAGS_save_result) {
  87. // Get video information: resolution, fps
  88. int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  89. int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  90. int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));
  91. int video_fourcc;
  92. if (FLAGS_use_camera) {
  93. video_fourcc = 828601953;
  94. } else {
  95. video_fourcc = static_cast<int>(capture.get(CV_CAP_PROP_FOURCC));
  96. }
  97. if (FLAGS_use_camera) {
  98. time_t now = time(0);
  99. video_out_path =
  100. PaddleX::generate_save_path(FLAGS_save_dir,
  101. std::to_string(now) + ".mp4");
  102. } else {
  103. video_out_path =
  104. PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_video_path);
  105. }
  106. video_out.open(video_out_path.c_str(),
  107. video_fourcc,
  108. video_fps,
  109. cv::Size(video_width, video_height),
  110. true);
  111. if (!video_out.isOpened()) {
  112. std::cout << "Create video writer failed!" << std::endl;
  113. return -1;
  114. }
  115. }
  116. PaddleX::ClsResult result;
  117. cv::Mat frame;
  118. int key;
  119. while (capture.read(frame)) {
  120. if (FLAGS_show_result || FLAGS_use_camera) {
  121. key = cv::waitKey(1);
  122. // When pressing `ESC`, then exit program and result video is saved
  123. if (key == 27) {
  124. break;
  125. }
  126. } else if (frame.empty()) {
  127. break;
  128. }
  129. // Begin to predict
  130. model.predict(frame, &result);
  131. // Visualize results
  132. cv::Mat vis_img = frame.clone();
  133. auto colormap = PaddleX::GenerateColorMap(model.labels.size());
  134. int c1 = colormap[3 * result.category_id + 0];
  135. int c2 = colormap[3 * result.category_id + 1];
  136. int c3 = colormap[3 * result.category_id + 2];
  137. cv::Scalar text_color = cv::Scalar(c1, c2, c3);
  138. std::string text = result.category;
  139. text += std::to_string(static_cast<int>(result.score * 100)) + "%";
  140. int font_face = cv::FONT_HERSHEY_SIMPLEX;
  141. double font_scale = 0.5f;
  142. float thickness = 0.5;
  143. cv::Size text_size =
  144. cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
  145. cv::Point origin;
  146. origin.x = frame.cols / 2;
  147. origin.y = frame.rows / 2;
  148. cv::Rect text_back = cv::Rect(origin.x,
  149. origin.y - text_size.height,
  150. text_size.width,
  151. text_size.height);
  152. cv::rectangle(vis_img, text_back, text_color, -1);
  153. cv::putText(vis_img,
  154. text,
  155. origin,
  156. font_face,
  157. font_scale,
  158. cv::Scalar(255, 255, 255),
  159. thickness);
  160. if (FLAGS_show_result || FLAGS_use_camera) {
  161. cv::imshow("video_classifier", vis_img);
  162. }
  163. if (FLAGS_save_result) {
  164. video_out.write(vis_img);
  165. }
  166. std::cout << "Predict label: " << result.category
  167. << ", label_id:" << result.category_id
  168. << ", score: " << result.score << std::endl;
  169. }
  170. capture.release();
  171. if (FLAGS_save_result) {
  172. video_out.release();
  173. std::cout << "Visualized output saved as " << video_out_path << std::endl;
  174. }
  175. if (FLAGS_show_result || FLAGS_use_camera) {
  176. cv::destroyAllWindows();
  177. }
  178. return 0;
  179. }