| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- import numpy as np
- from scipy.sparse import csr_matrix
- class ConfusionMatrix(object):
- """
- Confusion Matrix for segmentation evaluation
- """
- def __init__(self, num_classes=2, streaming=False):
- self.confusion_matrix = np.zeros(
- [num_classes, num_classes], dtype='int64')
- self.num_classes = num_classes
- self.streaming = streaming
- def calculate(self, pred, label, ignore=None):
- # If not in streaming mode, clear matrix everytime when call `calculate`
- if not self.streaming:
- self.zero_matrix()
- label = np.transpose(label, (0, 2, 3, 1))
- ignore = np.transpose(ignore, (0, 2, 3, 1))
- mask = np.array(ignore) == 1
- label = np.asarray(label)[mask]
- pred = np.asarray(pred)[mask]
- one = np.ones_like(pred)
- # Accumuate ([row=label, col=pred], 1) into sparse matrix
- spm = csr_matrix(
- (one, (label, pred)), shape=(self.num_classes, self.num_classes))
- spm = spm.todense()
- self.confusion_matrix += spm
- def zero_matrix(self):
- """ Clear confusion matrix """
- self.confusion_matrix = np.zeros(
- [self.num_classes, self.num_classes], dtype='int64')
- def mean_iou(self):
- iou_list = []
- avg_iou = 0
- # TODO: use numpy sum axis api to simpliy
- vji = np.zeros(self.num_classes, dtype=int)
- vij = np.zeros(self.num_classes, dtype=int)
- for j in range(self.num_classes):
- v_j = 0
- for i in range(self.num_classes):
- v_j += self.confusion_matrix[j][i]
- vji[j] = v_j
- for i in range(self.num_classes):
- v_i = 0
- for j in range(self.num_classes):
- v_i += self.confusion_matrix[j][i]
- vij[i] = v_i
- for c in range(self.num_classes):
- total = vji[c] + vij[c] - self.confusion_matrix[c][c]
- if total == 0:
- iou = 0
- else:
- iou = float(self.confusion_matrix[c][c]) / total
- avg_iou += iou
- iou_list.append(iou)
- avg_iou = float(avg_iou) / float(self.num_classes)
- return np.array(iou_list), avg_iou
- def accuracy(self):
- total = self.confusion_matrix.sum()
- total_right = 0
- for c in range(self.num_classes):
- total_right += self.confusion_matrix[c][c]
- if total == 0:
- avg_acc = 0
- else:
- avg_acc = float(total_right) / total
- vij = np.zeros(self.num_classes, dtype=int)
- for i in range(self.num_classes):
- v_i = 0
- for j in range(self.num_classes):
- v_i += self.confusion_matrix[j][i]
- vij[i] = v_i
- acc_list = []
- for c in range(self.num_classes):
- if vij[c] == 0:
- acc = 0
- else:
- acc = self.confusion_matrix[c][c] / float(vij[c])
- acc_list.append(acc)
- return np.array(acc_list), avg_acc
- def kappa(self):
- vji = np.zeros(self.num_classes)
- vij = np.zeros(self.num_classes)
- for j in range(self.num_classes):
- v_j = 0
- for i in range(self.num_classes):
- v_j += self.confusion_matrix[j][i]
- vji[j] = v_j
- for i in range(self.num_classes):
- v_i = 0
- for j in range(self.num_classes):
- v_i += self.confusion_matrix[j][i]
- vij[i] = v_i
- total = self.confusion_matrix.sum()
- # avoid spillovers
- # TODO: is it reasonable to hard code 10000.0?
- total = float(total) / 10000.0
- vji = vji / 10000.0
- vij = vij / 10000.0
- tp = 0
- tc = 0
- for c in range(self.num_classes):
- tp += vji[c] * vij[c]
- tc += self.confusion_matrix[c][c]
- tc = tc / 10000.0
- pe = tp / (total * total)
- po = tc / total
- kappa = (po - pe) / (1 - pe)
- return kappa
- def f1_score(self):
- f1score_list = []
- # TODO: use numpy sum axis api to simpliy
- vji = np.zeros(self.num_classes, dtype=int)
- vij = np.zeros(self.num_classes, dtype=int)
- for j in range(self.num_classes):
- v_j = 0
- for i in range(self.num_classes):
- v_j += self.confusion_matrix[j][i]
- vji[j] = v_j
- for i in range(self.num_classes):
- v_i = 0
- for j in range(self.num_classes):
- v_i += self.confusion_matrix[j][i]
- vij[i] = v_i
- for c in range(self.num_classes):
- if vji[c] == 0:
- precision = 0
- else:
- precision = self.confusion_matrix[c][c] / vji[c]
- if vij[c] == 0:
- recall = 0
- else:
- recall = self.confusion_matrix[c][c] / vij[c]
- if recall + precision <= 1e-06:
- f1_score = 0
- else:
- f1score = 2 * precision * recall / (recall + precision)
- f1score_list.append(f1score)
- return np.array(f1score_list)
|