base_model.h 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #pragma once
  15. #include <iostream>
  16. #include <memory>
  17. #include <string>
  18. #include <vector>
  19. #include "yaml-cpp/yaml.h"
  20. #include "model_deploy/common/include/base_postprocess.h"
  21. #include "model_deploy/common/include/base_preprocess.h"
  22. #include "model_deploy/common/include/output_struct.h"
  23. #include "model_deploy/engine/include/engine.h"
  24. namespace PaddleDeploy {
  25. class Model {
  26. private:
  27. const std::string model_type_;
  28. public:
  29. /*store the data after the YAML file has been parsed */
  30. YAML::Node yaml_config_;
  31. /* preprocess */
  32. std::shared_ptr<BasePreprocess> preprocess_;
  33. /* inference */
  34. std::shared_ptr<InferEngine> infer_engine_;
  35. /* postprocess */
  36. std::shared_ptr<BasePostprocess> postprocess_;
  37. Model() {}
  38. // Init model_type.
  39. explicit Model(const std::string model_type) : model_type_(model_type) {}
  40. virtual bool Init(const std::string& cfg_file) {
  41. if (!YamlConfigInit(cfg_file)) return false;
  42. if (!PreprocessInit()) return false;
  43. if (!PostprocessInit()) return false;
  44. return true;
  45. }
  46. virtual bool YamlConfigInit(const std::string& cfg_file) {
  47. // YAML::Node yaml_config_ = YAML::LoadFile(cfg_file);
  48. std::cerr << "Error! The Base Model was incorrectly entered" << std::endl;
  49. return false;
  50. }
  51. virtual bool PreprocessInit() {
  52. preprocess_ = nullptr;
  53. std::cerr << "model no Preprocess!" << std::endl;
  54. return false;
  55. }
  56. bool PaddleEngineInit(const PaddleEngineConfig& engine_config);
  57. bool TritonEngineInit(const TritonEngineConfig& engine_config);
  58. bool TensorRTInit(const TensorRTEngineConfig& engine_config);
  59. virtual bool PostprocessInit() {
  60. postprocess_ = nullptr;
  61. std::cerr << "model no Postprocess!" << std::endl;
  62. return false;
  63. }
  64. virtual bool Predict(const std::vector<cv::Mat>& imgs,
  65. std::vector<Result>* results,
  66. int thread_num = 1) {
  67. if (!preprocess_ || !postprocess_ || !infer_engine_) {
  68. std::cerr << "No init,cann't predict" << std::endl;
  69. return false;
  70. }
  71. results->clear();
  72. std::vector<cv::Mat> imgs_clone;
  73. for (auto i = 0; i < imgs.size(); ++i) {
  74. imgs_clone.push_back(imgs[i].clone());
  75. }
  76. std::vector<ShapeInfo> shape_infos;
  77. std::vector<DataBlob> inputs;
  78. std::vector<DataBlob> outputs;
  79. if (!preprocess_->Run(&imgs_clone, &inputs, &shape_infos, thread_num)) {
  80. return false;
  81. }
  82. if (!infer_engine_->Infer(inputs, &outputs)) {
  83. return false;
  84. }
  85. if (!postprocess_->Run(outputs, shape_infos, results, thread_num)) {
  86. return false;
  87. }
  88. return true;
  89. }
  90. virtual bool PrePrecess(const std::vector<cv::Mat>& imgs,
  91. std::vector<DataBlob>* inputs,
  92. std::vector<ShapeInfo>* shape_infos,
  93. int thread_num = 1) {
  94. if (!preprocess_) {
  95. std::cerr << "No PrePrecess, No pre Init. model_type=" << model_type_
  96. << std::endl;
  97. return false;
  98. }
  99. std::vector<cv::Mat> imgs_clone(imgs.size());
  100. for (auto i = 0; i < imgs.size(); ++i) {
  101. imgs[i].copyTo(imgs_clone[i]);
  102. }
  103. if (!preprocess_->Run(&imgs_clone, inputs, shape_infos, thread_num))
  104. return false;
  105. return true;
  106. }
  107. virtual void Infer(const std::vector<DataBlob>& inputs,
  108. std::vector<DataBlob>* outputs) {
  109. infer_engine_->Infer(inputs, outputs);
  110. }
  111. virtual bool PostPrecess(const std::vector<DataBlob>& outputs,
  112. const std::vector<ShapeInfo>& shape_infos,
  113. std::vector<Result>* results,
  114. int thread_num = 1) {
  115. if (!postprocess_) {
  116. std::cerr << "No PostPrecess, No post Init. model_type=" << model_type_
  117. << std::endl;
  118. return false;
  119. }
  120. if (postprocess_->Run(outputs, shape_infos, results, thread_num))
  121. return false;
  122. return true;
  123. }
  124. };
  125. } // namespace PaddleDeploy