| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "include/paddlex/paddlex.h"
- #include <iostream>
- #include <fstream>
- namespace PaddleX {
- void Model::create_predictor(const std::string& model_dir,
- const std::string& cfg_file,
- std::string device) {
- InferenceEngine::Core ie;
- network_ = ie.ReadNetwork(
- model_dir, model_dir.substr(0, model_dir.size() - 4) + ".bin");
- network_.setBatchSize(1);
- InferenceEngine::InputsDataMap inputInfo(network_.getInputsInfo());
- std::string imageInputName;
- for (const auto & inputInfoItem : inputInfo) {
- if (inputInfoItem.second->getTensorDesc().getDims().size() == 4) {
- imageInputName = inputInfoItem.first;
- inputInfoItem.second->setPrecision(InferenceEngine::Precision::FP32);
- inputInfoItem.second->getPreProcess().setResizeAlgorithm(
- InferenceEngine::RESIZE_BILINEAR);
- inputInfoItem.second->setLayout(InferenceEngine::Layout::NCHW);
- }
- if (inputInfoItem.second->getTensorDesc().getDims().size() == 2) {
- imageInputName = inputInfoItem.first;
- inputInfoItem.second->setPrecision(InferenceEngine::Precision::FP32);
- }
- }
- if (device == "MYRIAD") {
- std::map<std::string, std::string> networkConfig;
- networkConfig["VPU_HW_STAGES_OPTIMIZATION"] = "NO";
- executable_network_ = ie.LoadNetwork(network_, device, networkConfig);
- } else {
- executable_network_ = ie.LoadNetwork(network_, device);
- }
- load_config(cfg_file);
- }
- bool Model::load_config(const std::string& cfg_file) {
- YAML::Node config = YAML::LoadFile(cfg_file);
- type = config["_Attributes"]["model_type"].as<std::string>();
- name = config["Model"].as<std::string>();
- bool to_rgb = true;
- if (config["TransformsMode"].IsDefined()) {
- std::string mode = config["TransformsMode"].as<std::string>();
- if (mode == "BGR") {
- to_rgb = false;
- } else if (mode != "RGB") {
- std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
- << std::endl;
- return false;
- }
- }
- // init preprocess ops
- transforms_.Init(config["Transforms"], type, to_rgb);
- // read label list
- for (const auto& item : config["_Attributes"]["labels"]) {
- int index = labels.size();
- labels[index] = item.as<std::string>();
- }
- return true;
- }
- bool Model::preprocess(cv::Mat* input_im, ImageBlob* inputs) {
- if (!transforms_.Run(input_im, inputs)) {
- return false;
- }
- return true;
- }
- bool Model::predict(const cv::Mat& im, ClsResult* result) {
- inputs_.clear();
- if (type == "detector") {
- std::cerr << "Loading model is a 'detector', DetResult should be passed to "
- "function predict()!"
- << std::endl;
- return false;
- } else if (type == "segmenter") {
- std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
- "to function predict()!"
- << std::endl;
- return false;
- }
- // preprocess
- InferenceEngine::InferRequest infer_request =
- executable_network_.CreateInferRequest();
- std::string input_name = network_.getInputsInfo().begin()->first;
- inputs_.blob = infer_request.GetBlob(input_name);
- cv::Mat im_clone = im.clone();
- if (!preprocess(&im_clone, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- // predict
- infer_request.Infer();
- std::string output_name = network_.getOutputsInfo().begin()->first;
- output_ = infer_request.GetBlob(output_name);
- InferenceEngine::MemoryBlob::CPtr moutput =
- InferenceEngine::as<InferenceEngine::MemoryBlob>(output_);
- InferenceEngine::TensorDesc blob_output = moutput->getTensorDesc();
- std::vector<size_t> output_shape = blob_output.getDims();
- auto moutputHolder = moutput->rmap();
- float* outputs_data = moutputHolder.as<float *>();
- int size = 1;
- for (auto& i : output_shape) {
- size *= static_cast<int>(i);
- }
- // post process
- auto ptr = std::max_element(outputs_data, outputs_data + size);
- result->category_id = std::distance(outputs_data, ptr);
- result->score = *ptr;
- result->category = labels[result->category_id];
- return true;
- }
- bool Model::predict(const cv::Mat& im, DetResult* result) {
- inputs_.clear();
- result->clear();
- if (type == "classifier") {
- std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- } else if (type == "segmenter") {
- std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- }
- InferenceEngine::InferRequest infer_request =
- executable_network_.CreateInferRequest();
- InferenceEngine::InputsDataMap input_maps = network_.getInputsInfo();
- std::string inputName;
- for (const auto & input_map : input_maps) {
- if (input_map.second->getTensorDesc().getDims().size() == 4) {
- inputName = input_map.first;
- inputs_.blob = infer_request.GetBlob(inputName);
- }
- if (input_map.second->getTensorDesc().getDims().size() == 2) {
- inputName = input_map.first;
- inputs_.ori_im_size_ = infer_request.GetBlob(inputName);
- }
- }
- cv::Mat im_clone = im.clone();
- if (!preprocess(&im_clone, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- infer_request.Infer();
- InferenceEngine::OutputsDataMap out_maps = network_.getOutputsInfo();
- std::string outputName;
- for (const auto & output_map : out_maps) {
- if (output_map.second->getTensorDesc().getDims().size() == 2) {
- outputName = output_map.first;
- }
- }
- if (outputName.empty()) {
- std::cerr << "get result node failed!" << std::endl;
- return false;
- }
- InferenceEngine::Blob::Ptr output = infer_request.GetBlob(outputName);
- InferenceEngine::MemoryBlob::CPtr moutput =
- InferenceEngine::as<InferenceEngine::MemoryBlob>(output);
- InferenceEngine::TensorDesc blob_output = moutput->getTensorDesc();
- std::vector<size_t> output_shape = blob_output.getDims();
- auto moutputHolder = moutput->rmap();
- float* data = moutputHolder.as<float *>();
- int size = 1;
- for (auto& i : output_shape) {
- size *= static_cast<int>(i);
- }
- int num_boxes = size / 6;
- for (int i = 0; i < num_boxes; ++i) {
- if (data[i * 6] >= 0) {
- Box box;
- box.category_id = static_cast<int>(data[i * 6]);
- box.category = labels[box.category_id];
- box.score = data[i * 6 + 1];
- float xmin = data[i * 6 + 2];
- float ymin = data[i * 6 + 3];
- float xmax = data[i * 6 + 4];
- float ymax = data[i * 6 + 5];
- float w = xmax - xmin + 1;
- float h = ymax - ymin + 1;
- box.coordinate = {xmin, ymin, w, h};
- result->boxes.push_back(std::move(box));
- }
- }
- return true;
- }
- bool Model::predict(const cv::Mat& im, SegResult* result) {
- result->clear();
- inputs_.clear();
- if (type == "classifier") {
- std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- } else if (type == "detector") {
- std::cerr << "Loading model is a 'detector', DetResult should be passed to "
- "function predict()!" << std::endl;
- return false;
- }
- // init infer
- InferenceEngine::InferRequest infer_request =
- executable_network_.CreateInferRequest();
- std::string input_name = network_.getInputsInfo().begin()->first;
- inputs_.blob = infer_request.GetBlob(input_name);
- // preprocess
- cv::Mat im_clone = im.clone();
- if (!preprocess(&im_clone, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- // predict
- infer_request.Infer();
- InferenceEngine::OutputsDataMap out_map = network_.getOutputsInfo();
- auto iter = out_map.begin();
- iter++;
- std::string output_name_label = iter->first;
- InferenceEngine::Blob::Ptr output_label =
- infer_request.GetBlob(output_name_label);
- InferenceEngine::MemoryBlob::CPtr moutput_label =
- InferenceEngine::as<InferenceEngine::MemoryBlob>(output_label);
- InferenceEngine::TensorDesc blob_label = moutput_label->getTensorDesc();
- std::vector<size_t> output_label_shape = blob_label.getDims();
- int size = 1;
- for (auto& i : output_label_shape) {
- size *= static_cast<int>(i);
- result->label_map.shape.push_back(static_cast<int>(i));
- }
- result->label_map.data.resize(size);
- auto moutputHolder_label = moutput_label->rmap();
- int* label_data = moutputHolder_label.as<int *>();
- memcpy(result->label_map.data.data(), label_data, moutput_label->byteSize());
- iter++;
- std::string output_name_score = iter->first;
- InferenceEngine::Blob::Ptr output_score =
- infer_request.GetBlob(output_name_score);
- InferenceEngine::MemoryBlob::CPtr moutput_score =
- InferenceEngine::as<InferenceEngine::MemoryBlob>(output_score);
- InferenceEngine::TensorDesc blob_score = moutput_score->getTensorDesc();
- std::vector<size_t> output_score_shape = blob_score.getDims();
- size = 1;
- for (auto& i : output_score_shape) {
- size *= static_cast<int>(i);
- result->score_map.shape.push_back(static_cast<int>(i));
- }
- result->score_map.data.resize(size);
- auto moutputHolder_score = moutput_score->rmap();
- float* score_data = moutputHolder_score.as<float *>();
- memcpy(result->score_map.data.data(), score_data, moutput_score->byteSize());
- std::vector<uint8_t> label_map(result->label_map.data.begin(),
- result->label_map.data.end());
- cv::Mat mask_label(result->label_map.shape[1],
- result->label_map.shape[2],
- CV_8UC1,
- label_map.data());
- cv::Mat mask_score(result->score_map.shape[2],
- result->score_map.shape[3],
- CV_32FC1,
- result->score_map.data.data());
- int idx = 1;
- int len_postprocess = inputs_.im_size_before_resize_.size();
- for (std::vector<std::string>::reverse_iterator iter =
- inputs_.reshape_order_.rbegin();
- iter != inputs_.reshape_order_.rend();
- ++iter) {
- if (*iter == "padding") {
- auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
- inputs_.im_size_before_resize_.pop_back();
- auto padding_w = before_shape[0];
- auto padding_h = before_shape[1];
- mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
- mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
- } else if (*iter == "resize") {
- auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
- inputs_.im_size_before_resize_.pop_back();
- auto resize_w = before_shape[0];
- auto resize_h = before_shape[1];
- cv::resize(mask_label,
- mask_label,
- cv::Size(resize_h, resize_w),
- 0,
- 0,
- cv::INTER_NEAREST);
- cv::resize(mask_score,
- mask_score,
- cv::Size(resize_h, resize_w),
- 0,
- 0,
- cv::INTER_LINEAR);
- }
- ++idx;
- }
- result->label_map.data.assign(mask_label.begin<uint8_t>(),
- mask_label.end<uint8_t>());
- result->label_map.shape = {mask_label.rows, mask_label.cols};
- result->score_map.data.assign(mask_score.begin<float>(),
- mask_score.end<float>());
- result->score_map.shape = {mask_score.rows, mask_score.cols};
- return true;
- }
- } // namespace PaddleX
|