detection.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os.path as osp
  15. import numpy as np
  16. import paddle
  17. from paddleslim import L1NormFilterPruner
  18. def build_yolo_transforms(params):
  19. from paddlex import transforms as T
  20. target_size = params.image_shape[0]
  21. use_mixup = params.use_mixup
  22. dt_list = []
  23. if use_mixup:
  24. dt_list.append(
  25. T.MixupImage(
  26. alpha=params.mixup_alpha,
  27. beta=params.mixup_beta,
  28. mixup_epoch=int(params.num_epochs * 25. / 27)))
  29. dt_list.extend([
  30. T.RandomDistort(
  31. brightness_range=params.brightness_range,
  32. brightness_prob=params.brightness_prob,
  33. contrast_range=params.contrast_range,
  34. contrast_prob=params.contrast_prob,
  35. saturation_range=params.saturation_range,
  36. saturation_prob=params.saturation_prob,
  37. hue_range=params.hue_range,
  38. hue_prob=params.hue_prob),
  39. T.RandomExpand(
  40. prob=params.expand_prob,
  41. im_padding_value=[float(int(x * 255)) for x in params.image_mean])
  42. ])
  43. crop_image = params.crop_image
  44. if crop_image:
  45. dt_list.append(T.RandomCrop())
  46. dt_list.extend([
  47. T.Resize(
  48. target_size=target_size, interp='RANDOM'),
  49. T.RandomHorizontalFlip(prob=params.horizontal_flip_prob), T.Normalize(
  50. mean=params.image_mean, std=params.image_std)
  51. ])
  52. train_transforms = T.Compose(dt_list)
  53. eval_transforms = T.Compose([
  54. T.Resize(
  55. target_size=target_size, interp='CUBIC'),
  56. T.Normalize(
  57. mean=params.image_mean, std=params.image_std),
  58. ])
  59. return train_transforms, eval_transforms
  60. def build_rcnn_transforms(params):
  61. from paddlex import transforms as T
  62. short_size = min(params.image_shape)
  63. max_size = max(params.image_shape)
  64. train_transforms = T.Compose([
  65. T.RandomDistort(
  66. brightness_range=params.brightness_range,
  67. brightness_prob=params.brightness_prob,
  68. contrast_range=params.contrast_range,
  69. contrast_prob=params.contrast_prob,
  70. saturation_range=params.saturation_range,
  71. saturation_prob=params.saturation_prob,
  72. hue_range=params.hue_range,
  73. hue_prob=params.hue_prob),
  74. T.RandomHorizontalFlip(prob=params.horizontal_flip_prob),
  75. T.Normalize(
  76. mean=params.image_mean, std=params.image_std),
  77. T.ResizeByShort(
  78. short_size=short_size, max_size=max_size),
  79. ])
  80. eval_transforms = T.Compose([
  81. T.Normalize(),
  82. T.ResizeByShort(
  83. short_size=short_size, max_size=max_size),
  84. ])
  85. return train_transforms, eval_transforms
  86. def build_voc_datasets(dataset_path, train_transforms, eval_transforms):
  87. import paddlex as pdx
  88. train_file_list = osp.join(dataset_path, 'train_list.txt')
  89. eval_file_list = osp.join(dataset_path, 'val_list.txt')
  90. label_list = osp.join(dataset_path, 'labels.txt')
  91. train_dataset = pdx.datasets.VOCDetection(
  92. data_dir=dataset_path,
  93. file_list=train_file_list,
  94. label_list=label_list,
  95. transforms=train_transforms,
  96. shuffle=True)
  97. eval_dataset = pdx.datasets.VOCDetection(
  98. data_dir=dataset_path,
  99. file_list=eval_file_list,
  100. label_list=label_list,
  101. transforms=eval_transforms)
  102. return train_dataset, eval_dataset
  103. def build_coco_datasets(dataset_path, train_transforms, eval_transforms):
  104. import paddlex as pdx
  105. data_dir = osp.join(dataset_path, 'JPEGImages')
  106. train_ann_file = osp.join(dataset_path, 'train.json')
  107. eval_ann_file = osp.join(dataset_path, 'val.json')
  108. train_dataset = pdx.datasets.CocoDetection(
  109. data_dir=data_dir,
  110. ann_file=train_ann_file,
  111. transforms=train_transforms,
  112. shuffle=True)
  113. eval_dataset = pdx.datasets.CocoDetection(
  114. data_dir=data_dir, ann_file=eval_ann_file, transforms=eval_transforms)
  115. return train_dataset, eval_dataset
  116. def build_optimizer(parameters, step_each_epoch, params):
  117. import paddle
  118. from paddle.regularizer import L2Decay
  119. learning_rate = params.learning_rate
  120. lr_decay_epochs = params.lr_decay_epochs
  121. warmup_steps = params.warmup_steps
  122. warmup_start_lr = params.warmup_start_lr
  123. boundaries = [b * step_each_epoch for b in lr_decay_epochs]
  124. values = [
  125. learning_rate * (0.1**i) for i in range(len(lr_decay_epochs) + 1)
  126. ]
  127. lr = paddle.optimizer.lr.PiecewiseDecay(
  128. boundaries=boundaries, values=values)
  129. lr = paddle.optimizer.lr.LinearWarmup(
  130. learning_rate=lr,
  131. warmup_steps=warmup_steps,
  132. start_lr=warmup_start_lr,
  133. end_lr=learning_rate)
  134. factor = 1e-04 if params.model in ['FasterRCNN', 'MaskRCNN'] else 5e-04
  135. optimizer = paddle.optimizer.Momentum(
  136. learning_rate=lr,
  137. momentum=0.9,
  138. weight_decay=L2Decay(factor),
  139. parameters=parameters)
  140. return optimizer
  141. def train(task_path, dataset_path, params):
  142. import paddlex as pdx
  143. pdx.log_level = 3
  144. if params.model in ['YOLOv3', 'PPYOLO', 'PPYOLOTiny', 'PPYOLOv2']:
  145. train_transforms, eval_transforms = build_yolo_transforms(params)
  146. elif params.model in ['FasterRCNN', 'MaskRCNN']:
  147. train_transforms, eval_transforms = build_rcnn_transforms(params)
  148. if osp.exists(osp.join(dataset_path, 'JPEGImages')) and \
  149. osp.exists(osp.join(dataset_path, 'train.json')) and \
  150. osp.exists(osp.join(dataset_path, 'val.json')):
  151. train_dataset, eval_dataset = build_coco_datasets(
  152. dataset_path=dataset_path,
  153. train_transforms=train_transforms,
  154. eval_transforms=eval_transforms)
  155. elif osp.exists(osp.join(dataset_path, 'train_list.txt')) and \
  156. osp.exists(osp.join(dataset_path, 'val_list.txt')) and \
  157. osp.exists(osp.join(dataset_path, 'labels.txt')):
  158. train_dataset, eval_dataset = build_voc_datasets(
  159. dataset_path=dataset_path,
  160. train_transforms=train_transforms,
  161. eval_transforms=eval_transforms)
  162. step_each_epoch = train_dataset.num_samples // params.batch_size
  163. train_batch_size = params.batch_size
  164. save_interval_epochs = params.save_interval_epochs
  165. save_dir = osp.join(task_path, 'output')
  166. pretrain_weights = params.pretrain_weights
  167. if pretrain_weights is not None and osp.exists(pretrain_weights):
  168. pretrain_weights = osp.join(pretrain_weights, 'model.pdparams')
  169. detector = getattr(pdx.det, params.model)
  170. num_classes = len(train_dataset.labels)
  171. sensitivities_path = params.sensitivities_path
  172. pruned_flops = params.pruned_flops
  173. model = detector(num_classes=num_classes, backbone=params.backbone)
  174. if sensitivities_path is not None:
  175. # load weights
  176. model.net_initialize(pretrain_weights=pretrain_weights)
  177. pretrain_weights = None
  178. # prune
  179. dataset = eval_dataset or train_dataset
  180. im_shape = dataset[0]['image'].shape[:2]
  181. if getattr(model, 'with_fpn', False):
  182. im_shape[0] = int(np.ceil(im_shape[0] / 32) * 32)
  183. im_shape[1] = int(np.ceil(im_shape[1] / 32) * 32)
  184. inputs = [{
  185. "image": paddle.ones(
  186. shape=[1, 3] + list(im_shape), dtype='float32'),
  187. "im_shape": paddle.full(
  188. [1, 2], 640, dtype='float32'),
  189. "scale_factor": paddle.ones(
  190. shape=[1, 2], dtype='float32')
  191. }]
  192. model.net.eval()
  193. model.pruner = L1NormFilterPruner(
  194. model.net, inputs=inputs, sen_file=sensitivities_path)
  195. model.prune(pruned_flops=pruned_flops)
  196. optimizer = build_optimizer(model.net.parameters(), step_each_epoch,
  197. params)
  198. model.train(
  199. num_epochs=params.num_epochs,
  200. train_dataset=train_dataset,
  201. train_batch_size=train_batch_size,
  202. eval_dataset=eval_dataset,
  203. save_interval_epochs=save_interval_epochs,
  204. log_interval_steps=2,
  205. save_dir=save_dir,
  206. pretrain_weights=pretrain_weights,
  207. optimizer=optimizer,
  208. use_vdl=True,
  209. resume_checkpoint=params.resume_checkpoint)