| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.nn.initializer import Uniform
- import math
- __all__ = ["DarkNet53"]
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- input_channels,
- output_channels,
- filter_size,
- stride,
- padding,
- name=None):
- super(ConvBNLayer, self).__init__()
- self._conv = Conv2D(
- in_channels=input_channels,
- out_channels=output_channels,
- kernel_size=filter_size,
- stride=stride,
- padding=padding,
- weight_attr=ParamAttr(name=name + ".conv.weights"),
- bias_attr=False)
- bn_name = name + ".bn"
- self._bn = BatchNorm(
- num_channels=output_channels,
- act="relu",
- param_attr=ParamAttr(name=bn_name + ".scale"),
- bias_attr=ParamAttr(name=bn_name + ".offset"),
- moving_mean_name=bn_name + ".mean",
- moving_variance_name=bn_name + ".var")
- def forward(self, inputs):
- x = self._conv(inputs)
- x = self._bn(x)
- return x
- class BasicBlock(nn.Layer):
- def __init__(self, input_channels, output_channels, name=None):
- super(BasicBlock, self).__init__()
- self._conv1 = ConvBNLayer(
- input_channels, output_channels, 1, 1, 0, name=name + ".0")
- self._conv2 = ConvBNLayer(
- output_channels, output_channels * 2, 3, 1, 1, name=name + ".1")
- def forward(self, inputs):
- x = self._conv1(inputs)
- x = self._conv2(x)
- return paddle.add(x=inputs, y=x)
- class DarkNet(nn.Layer):
- def __init__(self, class_dim=1000):
- super(DarkNet, self).__init__()
- self.stages = [1, 2, 8, 8, 4]
- self._conv1 = ConvBNLayer(3, 32, 3, 1, 1, name="yolo_input")
- self._conv2 = ConvBNLayer(
- 32, 64, 3, 2, 1, name="yolo_input.downsample")
- self._basic_block_01 = BasicBlock(64, 32, name="stage.0.0")
- self._downsample_0 = ConvBNLayer(
- 64, 128, 3, 2, 1, name="stage.0.downsample")
- self._basic_block_11 = BasicBlock(128, 64, name="stage.1.0")
- self._basic_block_12 = BasicBlock(128, 64, name="stage.1.1")
- self._downsample_1 = ConvBNLayer(
- 128, 256, 3, 2, 1, name="stage.1.downsample")
- self._basic_block_21 = BasicBlock(256, 128, name="stage.2.0")
- self._basic_block_22 = BasicBlock(256, 128, name="stage.2.1")
- self._basic_block_23 = BasicBlock(256, 128, name="stage.2.2")
- self._basic_block_24 = BasicBlock(256, 128, name="stage.2.3")
- self._basic_block_25 = BasicBlock(256, 128, name="stage.2.4")
- self._basic_block_26 = BasicBlock(256, 128, name="stage.2.5")
- self._basic_block_27 = BasicBlock(256, 128, name="stage.2.6")
- self._basic_block_28 = BasicBlock(256, 128, name="stage.2.7")
- self._downsample_2 = ConvBNLayer(
- 256, 512, 3, 2, 1, name="stage.2.downsample")
- self._basic_block_31 = BasicBlock(512, 256, name="stage.3.0")
- self._basic_block_32 = BasicBlock(512, 256, name="stage.3.1")
- self._basic_block_33 = BasicBlock(512, 256, name="stage.3.2")
- self._basic_block_34 = BasicBlock(512, 256, name="stage.3.3")
- self._basic_block_35 = BasicBlock(512, 256, name="stage.3.4")
- self._basic_block_36 = BasicBlock(512, 256, name="stage.3.5")
- self._basic_block_37 = BasicBlock(512, 256, name="stage.3.6")
- self._basic_block_38 = BasicBlock(512, 256, name="stage.3.7")
- self._downsample_3 = ConvBNLayer(
- 512, 1024, 3, 2, 1, name="stage.3.downsample")
- self._basic_block_41 = BasicBlock(1024, 512, name="stage.4.0")
- self._basic_block_42 = BasicBlock(1024, 512, name="stage.4.1")
- self._basic_block_43 = BasicBlock(1024, 512, name="stage.4.2")
- self._basic_block_44 = BasicBlock(1024, 512, name="stage.4.3")
- self._pool = AdaptiveAvgPool2D(1)
- stdv = 1.0 / math.sqrt(1024.0)
- self._out = Linear(
- 1024,
- class_dim,
- weight_attr=ParamAttr(
- name="fc_weights", initializer=Uniform(-stdv, stdv)),
- bias_attr=ParamAttr(name="fc_offset"))
- def forward(self, inputs):
- x = self._conv1(inputs)
- x = self._conv2(x)
- x = self._basic_block_01(x)
- x = self._downsample_0(x)
- x = self._basic_block_11(x)
- x = self._basic_block_12(x)
- x = self._downsample_1(x)
- x = self._basic_block_21(x)
- x = self._basic_block_22(x)
- x = self._basic_block_23(x)
- x = self._basic_block_24(x)
- x = self._basic_block_25(x)
- x = self._basic_block_26(x)
- x = self._basic_block_27(x)
- x = self._basic_block_28(x)
- x = self._downsample_2(x)
- x = self._basic_block_31(x)
- x = self._basic_block_32(x)
- x = self._basic_block_33(x)
- x = self._basic_block_34(x)
- x = self._basic_block_35(x)
- x = self._basic_block_36(x)
- x = self._basic_block_37(x)
- x = self._basic_block_38(x)
- x = self._downsample_3(x)
- x = self._basic_block_41(x)
- x = self._basic_block_42(x)
- x = self._basic_block_43(x)
- x = self._basic_block_44(x)
- x = self._pool(x)
- x = paddle.squeeze(x, axis=[2, 3])
- x = self._out(x)
- return x
- def DarkNet53(**args):
- model = DarkNet(**args)
- return model
|