resnet.py 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import paddle
  18. from paddle import ParamAttr
  19. import paddle.nn as nn
  20. import paddle.nn.functional as F
  21. from paddle.nn import Conv2D, BatchNorm, Linear
  22. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D
  23. from paddle.nn.initializer import Uniform
  24. import math
  25. __all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
  26. class ConvBNLayer(nn.Layer):
  27. def __init__(self,
  28. num_channels,
  29. num_filters,
  30. filter_size,
  31. stride=1,
  32. groups=1,
  33. act=None,
  34. name=None,
  35. data_format="NCHW"):
  36. super(ConvBNLayer, self).__init__()
  37. self._conv = Conv2D(
  38. in_channels=num_channels,
  39. out_channels=num_filters,
  40. kernel_size=filter_size,
  41. stride=stride,
  42. padding=(filter_size - 1) // 2,
  43. groups=groups,
  44. weight_attr=ParamAttr(name=name + "_weights"),
  45. bias_attr=False,
  46. data_format=data_format)
  47. if name == "conv1":
  48. bn_name = "bn_" + name
  49. else:
  50. bn_name = "bn" + name[3:]
  51. self._batch_norm = BatchNorm(
  52. num_filters,
  53. act=act,
  54. param_attr=ParamAttr(name=bn_name + "_scale"),
  55. bias_attr=ParamAttr(bn_name + "_offset"),
  56. moving_mean_name=bn_name + "_mean",
  57. moving_variance_name=bn_name + "_variance",
  58. data_layout=data_format)
  59. def forward(self, inputs):
  60. y = self._conv(inputs)
  61. y = self._batch_norm(y)
  62. return y
  63. class BottleneckBlock(nn.Layer):
  64. def __init__(self,
  65. num_channels,
  66. num_filters,
  67. stride,
  68. shortcut=True,
  69. name=None,
  70. data_format="NCHW"):
  71. super(BottleneckBlock, self).__init__()
  72. self.conv0 = ConvBNLayer(
  73. num_channels=num_channels,
  74. num_filters=num_filters,
  75. filter_size=1,
  76. act="relu",
  77. name=name + "_branch2a",
  78. data_format=data_format)
  79. self.conv1 = ConvBNLayer(
  80. num_channels=num_filters,
  81. num_filters=num_filters,
  82. filter_size=3,
  83. stride=stride,
  84. act="relu",
  85. name=name + "_branch2b",
  86. data_format=data_format)
  87. self.conv2 = ConvBNLayer(
  88. num_channels=num_filters,
  89. num_filters=num_filters * 4,
  90. filter_size=1,
  91. act=None,
  92. name=name + "_branch2c",
  93. data_format=data_format)
  94. if not shortcut:
  95. self.short = ConvBNLayer(
  96. num_channels=num_channels,
  97. num_filters=num_filters * 4,
  98. filter_size=1,
  99. stride=stride,
  100. name=name + "_branch1",
  101. data_format=data_format)
  102. self.shortcut = shortcut
  103. self._num_channels_out = num_filters * 4
  104. def forward(self, inputs):
  105. y = self.conv0(inputs)
  106. conv1 = self.conv1(y)
  107. conv2 = self.conv2(conv1)
  108. if self.shortcut:
  109. short = inputs
  110. else:
  111. short = self.short(inputs)
  112. y = paddle.add(x=short, y=conv2)
  113. y = F.relu(y)
  114. return y
  115. class BasicBlock(nn.Layer):
  116. def __init__(self,
  117. num_channels,
  118. num_filters,
  119. stride,
  120. shortcut=True,
  121. name=None,
  122. data_format="NCHW"):
  123. super(BasicBlock, self).__init__()
  124. self.stride = stride
  125. self.conv0 = ConvBNLayer(
  126. num_channels=num_channels,
  127. num_filters=num_filters,
  128. filter_size=3,
  129. stride=stride,
  130. act="relu",
  131. name=name + "_branch2a",
  132. data_format=data_format)
  133. self.conv1 = ConvBNLayer(
  134. num_channels=num_filters,
  135. num_filters=num_filters,
  136. filter_size=3,
  137. act=None,
  138. name=name + "_branch2b",
  139. data_format=data_format)
  140. if not shortcut:
  141. self.short = ConvBNLayer(
  142. num_channels=num_channels,
  143. num_filters=num_filters,
  144. filter_size=1,
  145. stride=stride,
  146. name=name + "_branch1",
  147. data_format=data_format)
  148. self.shortcut = shortcut
  149. def forward(self, inputs):
  150. y = self.conv0(inputs)
  151. conv1 = self.conv1(y)
  152. if self.shortcut:
  153. short = inputs
  154. else:
  155. short = self.short(inputs)
  156. y = paddle.add(x=short, y=conv1)
  157. y = F.relu(y)
  158. return y
  159. class ResNet(nn.Layer):
  160. def __init__(self,
  161. layers=50,
  162. class_dim=1000,
  163. input_image_channel=3,
  164. data_format="NCHW"):
  165. super(ResNet, self).__init__()
  166. self.layers = layers
  167. self.data_format = data_format
  168. self.input_image_channel = input_image_channel
  169. supported_layers = [18, 34, 50, 101, 152]
  170. assert layers in supported_layers, \
  171. "supported layers are {} but input layer is {}".format(
  172. supported_layers, layers)
  173. if layers == 18:
  174. depth = [2, 2, 2, 2]
  175. elif layers == 34 or layers == 50:
  176. depth = [3, 4, 6, 3]
  177. elif layers == 101:
  178. depth = [3, 4, 23, 3]
  179. elif layers == 152:
  180. depth = [3, 8, 36, 3]
  181. num_channels = [64, 256, 512,
  182. 1024] if layers >= 50 else [64, 64, 128, 256]
  183. num_filters = [64, 128, 256, 512]
  184. self.conv = ConvBNLayer(
  185. num_channels=self.input_image_channel,
  186. num_filters=64,
  187. filter_size=7,
  188. stride=2,
  189. act="relu",
  190. name="conv1",
  191. data_format=self.data_format)
  192. self.pool2d_max = MaxPool2D(
  193. kernel_size=3, stride=2, padding=1, data_format=self.data_format)
  194. self.block_list = []
  195. if layers >= 50:
  196. for block in range(len(depth)):
  197. shortcut = False
  198. for i in range(depth[block]):
  199. if layers in [101, 152] and block == 2:
  200. if i == 0:
  201. conv_name = "res" + str(block + 2) + "a"
  202. else:
  203. conv_name = "res" + str(block + 2) + "b" + str(i)
  204. else:
  205. conv_name = "res" + str(block + 2) + chr(97 + i)
  206. bottleneck_block = self.add_sublayer(
  207. conv_name,
  208. BottleneckBlock(
  209. num_channels=num_channels[block]
  210. if i == 0 else num_filters[block] * 4,
  211. num_filters=num_filters[block],
  212. stride=2 if i == 0 and block != 0 else 1,
  213. shortcut=shortcut,
  214. name=conv_name,
  215. data_format=self.data_format))
  216. self.block_list.append(bottleneck_block)
  217. shortcut = True
  218. else:
  219. for block in range(len(depth)):
  220. shortcut = False
  221. for i in range(depth[block]):
  222. conv_name = "res" + str(block + 2) + chr(97 + i)
  223. basic_block = self.add_sublayer(
  224. conv_name,
  225. BasicBlock(
  226. num_channels=num_channels[block]
  227. if i == 0 else num_filters[block],
  228. num_filters=num_filters[block],
  229. stride=2 if i == 0 and block != 0 else 1,
  230. shortcut=shortcut,
  231. name=conv_name,
  232. data_format=self.data_format))
  233. self.block_list.append(basic_block)
  234. shortcut = True
  235. self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
  236. self.pool2d_avg_channels = num_channels[-1] * 2
  237. stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
  238. self.out = Linear(
  239. self.pool2d_avg_channels,
  240. class_dim,
  241. weight_attr=ParamAttr(
  242. initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
  243. bias_attr=ParamAttr(name="fc_0.b_0"))
  244. def forward(self, inputs):
  245. y = self.conv(inputs)
  246. y = self.pool2d_max(y)
  247. for block in self.block_list:
  248. y = block(y)
  249. y = self.pool2d_avg(y)
  250. y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
  251. y = self.out(y)
  252. return y
  253. def ResNet18(**args):
  254. model = ResNet(layers=18, **args)
  255. return model
  256. def ResNet34(**args):
  257. model = ResNet(layers=34, **args)
  258. return model
  259. def ResNet50(**args):
  260. model = ResNet(layers=50, **args)
  261. return model
  262. def ResNet101(**args):
  263. model = ResNet(layers=101, **args)
  264. return model
  265. def ResNet152(**args):
  266. model = ResNet(layers=152, **args)
  267. return model