| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490 |
- # coding: utf8
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import paddle.fluid as fluid
- from .model_utils.libs import scope, name_scope
- from .model_utils.libs import bn, bn_relu, relu, qsigmoid
- from .model_utils.libs import conv, max_pool, deconv
- from .model_utils.libs import separate_conv
- from .model_utils.libs import sigmoid_to_softmax
- from .model_utils.loss import softmax_with_loss
- from .model_utils.loss import dice_loss
- from .model_utils.loss import bce_loss
- from paddlex.cv.nets.xception import Xception
- from paddlex.cv.nets.mobilenet_v2 import MobileNetV2
- class DeepLabv3p(object):
- """实现DeepLabv3+模型
- `"Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
- <https://arxiv.org/abs/1802.02611>`
- Args:
- num_classes (int): 类别数。
- backbone (paddlex.cv.nets): 神经网络,实现DeepLabv3+特征图的计算。
- mode (str): 网络运行模式,根据mode构建网络的输入和返回。
- 当mode为'train'时,输入为image(-1, 3, -1, -1)和label (-1, 1, -1, -1) 返回loss。
- 当mode为'train'时,输入为image (-1, 3, -1, -1)和label (-1, 1, -1, -1),返回loss,
- pred (与网络输入label 相同大小的预测结果,值代表相应的类别),label,mask(非忽略值的mask,
- 与label相同大小,bool类型)。
- 当mode为'test'时,输入为image(-1, 3, -1, -1)返回pred (-1, 1, -1, -1)和
- logit (-1, num_classes, -1, -1) 通道维上代表每一类的概率值。
- output_stride (int): backbone 输出特征图相对于输入的下采样倍数,一般取值为8或16。
- aspp_with_sep_conv (bool): 在asspp模块是否采用separable convolutions。
- decoder_use_sep_conv (bool): decoder模块是否采用separable convolutions。
- encoder_with_aspp (bool): 是否在encoder阶段采用aspp模块。
- enable_decoder (bool): 是否使用decoder模块。
- use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。
- use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。
- 当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。
- class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为
- num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重
- 自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
- 即平时使用的交叉熵损失函数。
- ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。
- fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
- Raises:
- ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
- ValueError: class_weight为list, 但长度不等于num_class。
- class_weight为str, 但class_weight.low()不等于dynamic。
- TypeError: class_weight不为None时,其类型不是list或str。
- """
- def __init__(self,
- num_classes,
- backbone,
- input_channel=3,
- mode='train',
- output_stride=16,
- aspp_with_sep_conv=True,
- decoder_use_sep_conv=True,
- encoder_with_aspp=True,
- enable_decoder=True,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=255,
- fixed_input_shape=None,
- pooling_stride=[1, 1],
- pooling_crop_size=None,
- aspp_with_se=False,
- se_use_qsigmoid=False,
- aspp_convs_filters=256,
- aspp_with_concat_projection=True,
- add_image_level_feature=True,
- use_sum_merge=False,
- conv_filters=256,
- output_is_logits=False):
- # dice_loss或bce_loss只适用两类分割中
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classfication"
- )
- if class_weight is not None:
- if isinstance(class_weight, list):
- if len(class_weight) != num_classes:
- raise ValueError(
- "Length of class_weight should be equal to number of classes"
- )
- elif isinstance(class_weight, str):
- if class_weight.lower() != 'dynamic':
- raise ValueError(
- "if class_weight is string, must be dynamic!")
- else:
- raise TypeError(
- 'Expect class_weight is a list or string but receive {}'.
- format(type(class_weight)))
- self.num_classes = num_classes
- self.input_channel = input_channel
- self.backbone = backbone
- self.mode = mode
- self.use_bce_loss = use_bce_loss
- self.use_dice_loss = use_dice_loss
- self.class_weight = class_weight
- self.ignore_index = ignore_index
- self.output_stride = output_stride
- self.aspp_with_sep_conv = aspp_with_sep_conv
- self.decoder_use_sep_conv = decoder_use_sep_conv
- self.encoder_with_aspp = encoder_with_aspp
- self.enable_decoder = enable_decoder
- self.fixed_input_shape = fixed_input_shape
- self.output_is_logits = output_is_logits
- self.aspp_convs_filters = aspp_convs_filters
- self.output_stride = output_stride
- self.pooling_crop_size = pooling_crop_size
- self.pooling_stride = pooling_stride
- self.se_use_qsigmoid = se_use_qsigmoid
- self.aspp_with_concat_projection = aspp_with_concat_projection
- self.add_image_level_feature = add_image_level_feature
- self.aspp_with_se = aspp_with_se
- self.use_sum_merge = use_sum_merge
- self.conv_filters = conv_filters
- def _encoder(self, input):
- # 编码器配置,采用ASPP架构,pooling + 1x1_conv + 三个不同尺度的空洞卷积并行, concat后1x1conv
- # ASPP_WITH_SEP_CONV:默认为真,使用depthwise可分离卷积,否则使用普通卷积
- # OUTPUT_STRIDE: 下采样倍数,8或16,决定aspp_ratios大小
- # aspp_ratios:ASPP模块空洞卷积的采样率
- if self.output_stride == 16:
- aspp_ratios = [6, 12, 18]
- elif self.output_stride == 8:
- aspp_ratios = [12, 24, 36]
- else:
- aspp_ratios = []
- param_attr = fluid.ParamAttr(
- name=name_scope + 'weights',
- regularizer=None,
- initializer=fluid.initializer.TruncatedNormal(
- loc=0.0, scale=0.06))
- concat_logits = []
- with scope('encoder'):
- channel = self.aspp_convs_filters
- with scope("image_pool"):
- if self.pooling_crop_size is None:
- image_avg = fluid.layers.reduce_mean(
- input, [2, 3], keep_dim=True)
- else:
- pool_w = int((self.pooling_crop_size[0] - 1.0) /
- self.output_stride + 1.0)
- pool_h = int((self.pooling_crop_size[1] - 1.0) /
- self.output_stride + 1.0)
- image_avg = fluid.layers.pool2d(
- input,
- pool_size=(pool_h, pool_w),
- pool_stride=self.pooling_stride,
- pool_type='avg',
- pool_padding='VALID')
- act = qsigmoid if self.se_use_qsigmoid else bn_relu
- image_avg = act(
- conv(
- image_avg,
- channel,
- 1,
- 1,
- groups=1,
- padding=0,
- param_attr=param_attr))
- input_shape = fluid.layers.shape(input)
- image_avg = fluid.layers.resize_bilinear(image_avg,
- input_shape[2:])
- if self.add_image_level_feature:
- concat_logits.append(image_avg)
- with scope("aspp0"):
- aspp0 = bn_relu(
- conv(
- input,
- channel,
- 1,
- 1,
- groups=1,
- padding=0,
- param_attr=param_attr))
- concat_logits.append(aspp0)
- if aspp_ratios:
- with scope("aspp1"):
- if self.aspp_with_sep_conv:
- aspp1 = separate_conv(
- input,
- channel,
- 1,
- 3,
- dilation=aspp_ratios[0],
- act=relu)
- else:
- aspp1 = bn_relu(
- conv(
- input,
- channel,
- stride=1,
- filter_size=3,
- dilation=aspp_ratios[0],
- padding=aspp_ratios[0],
- param_attr=param_attr))
- concat_logits.append(aspp1)
- with scope("aspp2"):
- if self.aspp_with_sep_conv:
- aspp2 = separate_conv(
- input,
- channel,
- 1,
- 3,
- dilation=aspp_ratios[1],
- act=relu)
- else:
- aspp2 = bn_relu(
- conv(
- input,
- channel,
- stride=1,
- filter_size=3,
- dilation=aspp_ratios[1],
- padding=aspp_ratios[1],
- param_attr=param_attr))
- concat_logits.append(aspp2)
- with scope("aspp3"):
- if self.aspp_with_sep_conv:
- aspp3 = separate_conv(
- input,
- channel,
- 1,
- 3,
- dilation=aspp_ratios[2],
- act=relu)
- else:
- aspp3 = bn_relu(
- conv(
- input,
- channel,
- stride=1,
- filter_size=3,
- dilation=aspp_ratios[2],
- padding=aspp_ratios[2],
- param_attr=param_attr))
- concat_logits.append(aspp3)
- with scope("concat"):
- data = fluid.layers.concat(concat_logits, axis=1)
- if self.aspp_with_concat_projection:
- data = bn_relu(
- conv(
- data,
- channel,
- 1,
- 1,
- groups=1,
- padding=0,
- param_attr=param_attr))
- data = fluid.layers.dropout(data, 0.9)
- if self.aspp_with_se:
- data = data * image_avg
- return data
- def _decoder_with_sum_merge(self, encode_data, decode_shortcut,
- param_attr):
- decode_shortcut_shape = fluid.layers.shape(decode_shortcut)
- encode_data = fluid.layers.resize_bilinear(encode_data,
- decode_shortcut_shape[2:])
- encode_data = conv(
- encode_data,
- self.conv_filters,
- 1,
- 1,
- groups=1,
- padding=0,
- param_attr=param_attr)
- with scope('merge'):
- decode_shortcut = conv(
- decode_shortcut,
- self.conv_filters,
- 1,
- 1,
- groups=1,
- padding=0,
- param_attr=param_attr)
- return encode_data + decode_shortcut
- def _decoder_with_concat(self, encode_data, decode_shortcut, param_attr):
- with scope('concat'):
- decode_shortcut = bn_relu(
- conv(
- decode_shortcut,
- 48,
- 1,
- 1,
- groups=1,
- padding=0,
- param_attr=param_attr))
- decode_shortcut_shape = fluid.layers.shape(decode_shortcut)
- encode_data = fluid.layers.resize_bilinear(
- encode_data, decode_shortcut_shape[2:])
- encode_data = fluid.layers.concat(
- [encode_data, decode_shortcut], axis=1)
- if self.decoder_use_sep_conv:
- with scope("separable_conv1"):
- encode_data = separate_conv(
- encode_data, self.conv_filters, 1, 3, dilation=1, act=relu)
- with scope("separable_conv2"):
- encode_data = separate_conv(
- encode_data, self.conv_filters, 1, 3, dilation=1, act=relu)
- else:
- with scope("decoder_conv1"):
- encode_data = bn_relu(
- conv(
- encode_data,
- self.conv_filters,
- stride=1,
- filter_size=3,
- dilation=1,
- padding=1,
- param_attr=param_attr))
- with scope("decoder_conv2"):
- encode_data = bn_relu(
- conv(
- encode_data,
- self.conv_filters,
- stride=1,
- filter_size=3,
- dilation=1,
- padding=1,
- param_attr=param_attr))
- return encode_data
- def _decoder(self, encode_data, decode_shortcut):
- # 解码器配置
- # encode_data:编码器输出
- # decode_shortcut: 从backbone引出的分支, resize后与encode_data concat
- # decoder_use_sep_conv: 默认为真,则concat后连接两个可分离卷积,否则为普通卷积
- param_attr = fluid.ParamAttr(
- name=name_scope + 'weights',
- regularizer=None,
- initializer=fluid.initializer.TruncatedNormal(
- loc=0.0, scale=0.06))
- with scope('decoder'):
- if self.use_sum_merge:
- return self._decoder_with_sum_merge(
- encode_data, decode_shortcut, param_attr)
- return self._decoder_with_concat(encode_data, decode_shortcut,
- param_attr)
- def _get_loss(self, logit, label, mask):
- avg_loss = 0
- if not (self.use_dice_loss or self.use_bce_loss):
- avg_loss += softmax_with_loss(
- logit,
- label,
- mask,
- num_classes=self.num_classes,
- weight=self.class_weight,
- ignore_index=self.ignore_index)
- else:
- if self.use_dice_loss:
- avg_loss += dice_loss(logit, label, mask)
- if self.use_bce_loss:
- avg_loss += bce_loss(
- logit, label, mask, ignore_index=self.ignore_index)
- return avg_loss
- def generate_inputs(self):
- inputs = OrderedDict()
- if self.fixed_input_shape is not None:
- input_shape = [
- None, self.input_channel, self.fixed_input_shape[1],
- self.fixed_input_shape[0]
- ]
- inputs['image'] = fluid.data(
- dtype='float32', shape=input_shape, name='image')
- else:
- inputs['image'] = fluid.data(
- dtype='float32',
- shape=[None, self.input_channel, None, None],
- name='image')
- if self.mode == 'train':
- inputs['label'] = fluid.data(
- dtype='int32', shape=[None, 1, None, None], name='label')
- return inputs
- def build_net(self, inputs):
- # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1
- if self.use_dice_loss or self.use_bce_loss:
- self.num_classes = 1
- image = inputs['image']
- if 'MobileNetV3' in self.backbone.__class__.__name__:
- data, decode_shortcut = self.backbone(image)
- else:
- data, decode_shortcuts = self.backbone(image)
- decode_shortcut = decode_shortcuts[self.backbone.decode_points]
- # 编码器解码器设置
- if self.encoder_with_aspp:
- data = self._encoder(data)
- if self.enable_decoder:
- data = self._decoder(data, decode_shortcut)
- # 根据类别数设置最后一个卷积层输出,并resize到图片原始尺寸
- param_attr = fluid.ParamAttr(
- name=name_scope + 'weights',
- regularizer=fluid.regularizer.L2DecayRegularizer(
- regularization_coeff=0.0),
- initializer=fluid.initializer.TruncatedNormal(
- loc=0.0, scale=0.01))
- if not self.output_is_logits:
- with scope('logit'):
- with fluid.name_scope('last_conv'):
- logit = conv(
- data,
- self.num_classes,
- 1,
- stride=1,
- padding=0,
- bias_attr=True,
- param_attr=param_attr)
- else:
- logit = data
- image_shape = fluid.layers.shape(image)
- logit = fluid.layers.resize_bilinear(logit, image_shape[2:])
- if self.num_classes == 1:
- out = sigmoid_to_softmax(logit)
- out = fluid.layers.transpose(out, [0, 2, 3, 1])
- else:
- out = fluid.layers.transpose(logit, [0, 2, 3, 1])
- pred = fluid.layers.argmax(out, axis=3)
- pred = fluid.layers.unsqueeze(pred, axes=[3])
- if self.mode == 'train':
- label = inputs['label']
- mask = label != self.ignore_index
- return self._get_loss(logit, label, mask)
- elif self.mode == 'eval':
- label = inputs['label']
- mask = label != self.ignore_index
- loss = self._get_loss(logit, label, mask)
- return loss, pred, label, mask
- else:
- if self.num_classes == 1:
- logit = sigmoid_to_softmax(logit)
- else:
- logit = fluid.layers.softmax(logit, axis=1)
- return pred, logit
- return logit
|