classifier.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import math
  16. import os.path as osp
  17. from collections import OrderedDict
  18. import numpy as np
  19. import paddle
  20. from paddle import to_tensor
  21. import paddle.nn.functional as F
  22. from paddle.static import InputSpec
  23. from paddlex.utils import logging, TrainingStats, DisablePrint
  24. from paddlex.cv.models.base import BaseModel
  25. from paddlex.cv.transforms import arrange_transforms
  26. with DisablePrint():
  27. from PaddleClas.ppcls.modeling import architectures
  28. from PaddleClas.ppcls.modeling.loss import CELoss
  29. __all__ = [
  30. "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152",
  31. "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet50_vd_ssld",
  32. "ResNet101_vd", "ResNet101_vd_ssld", "ResNet152_vd", "ResNet200_vd",
  33. "AlexNet", "DarkNet53", "MobileNetV1", "MobileNetV2", "MobileNetV3_small",
  34. "MobileNetV3_small_ssld", "MobileNetV3_large", "MobileNetV3_large_ssld",
  35. "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264",
  36. "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", "HRNet_W44_C",
  37. "HRNet_W48_C", "HRNet_W64_C", "Xception41", "Xception65", "Xception71",
  38. "ShuffleNetV2", "ShuffleNetV2_swish"
  39. ]
  40. class BaseClassifier(BaseModel):
  41. """Parent class of all classification models.
  42. Args:
  43. model_name (str, optional): Name of classification model. Defaults to 'ResNet50'.
  44. num_classes (int, optional): The number of target classes. Defaults to 1000.
  45. """
  46. def __init__(self, model_name='ResNet50', num_classes=1000, **params):
  47. self.init_params = locals()
  48. self.init_params.update(params)
  49. del self.init_params['params']
  50. super(BaseClassifier, self).__init__('classifier')
  51. if not hasattr(architectures, model_name):
  52. raise Exception("ERROR: There's no model named {}.".format(
  53. model_name))
  54. self.model_name = model_name
  55. self.labels = None
  56. self.num_classes = num_classes
  57. for k, v in params.items():
  58. setattr(self, k, v)
  59. self.net = self.build_net(**params)
  60. def build_net(self, **params):
  61. with paddle.utils.unique_name.guard():
  62. net = architectures.__dict__[self.model_name](
  63. class_dim=self.num_classes, **params)
  64. return net
  65. def get_test_inputs(self, image_shape):
  66. input_spec = [
  67. InputSpec(
  68. shape=[None, 3] + image_shape, name='image', dtype='float32')
  69. ]
  70. return input_spec
  71. def run(self, net, inputs, mode):
  72. net_out = net(inputs[0])
  73. softmax_out = F.softmax(net_out)
  74. if mode == 'test':
  75. outputs = OrderedDict([('prediction', softmax_out)])
  76. elif mode == 'eval':
  77. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  78. 1))
  79. acc1 = paddle.metric.accuracy(softmax_out, label=labels)
  80. k = min(5, self.num_classes)
  81. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  82. # multi cards eval
  83. if paddle.distributed.get_world_size() > 1:
  84. acc1 = paddle.distributed.all_reduce(
  85. acc1, op=paddle.distributed.ReduceOp.
  86. SUM) / paddle.distributed.get_world_size()
  87. acck = paddle.distributed.all_reduce(
  88. acck, op=paddle.distributed.ReduceOp.
  89. SUM) / paddle.distributed.get_world_size()
  90. outputs = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck),
  91. ('prediction', softmax_out)])
  92. else:
  93. # mode == 'train'
  94. labels = to_tensor(inputs[1].numpy().astype('int64').reshape(-1,
  95. 1))
  96. loss = CELoss(class_dim=self.num_classes)
  97. loss = loss(net_out, inputs[1])
  98. acc1 = paddle.metric.accuracy(softmax_out, label=labels, k=1)
  99. k = min(5, self.num_classes)
  100. acck = paddle.metric.accuracy(softmax_out, label=labels, k=k)
  101. outputs = OrderedDict([('loss', loss), ('acc1', acc1),
  102. ('acc{}'.format(k), acck)])
  103. return outputs
  104. def default_optimizer(self, parameters, learning_rate, warmup_steps,
  105. warmup_start_lr, lr_decay_epochs, lr_decay_gamma,
  106. num_steps_each_epoch):
  107. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  108. values = [
  109. learning_rate * (lr_decay_gamma**i)
  110. for i in range(len(lr_decay_epochs) + 1)
  111. ]
  112. scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values)
  113. if warmup_steps > 0:
  114. if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
  115. logging.error(
  116. "In function train(), parameters should satisfy: "
  117. "warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
  118. exit=False)
  119. logging.error(
  120. "See this doc for more information: "
  121. "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
  122. exit=False)
  123. logging.error(
  124. "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, "
  125. "please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
  126. format(lr_decay_epochs[0] * num_steps_each_epoch,
  127. warmup_steps // num_steps_each_epoch))
  128. scheduler = paddle.optimizer.lr.LinearWarmup(
  129. learning_rate=scheduler,
  130. warmup_steps=warmup_steps,
  131. start_lr=warmup_start_lr,
  132. end_lr=learning_rate)
  133. optimizer = paddle.optimizer.Momentum(
  134. scheduler,
  135. momentum=.9,
  136. weight_decay=paddle.regularizer.L2Decay(coeff=1e-04),
  137. parameters=parameters)
  138. return optimizer
  139. def train(self,
  140. num_epochs,
  141. train_dataset,
  142. train_batch_size=64,
  143. eval_dataset=None,
  144. optimizer=None,
  145. save_interval_epochs=1,
  146. log_interval_steps=10,
  147. save_dir='output',
  148. pretrain_weights='IMAGENET',
  149. learning_rate=.025,
  150. warmup_steps=0,
  151. warmup_start_lr=0.0,
  152. lr_decay_epochs=(30, 60, 90),
  153. lr_decay_gamma=0.1,
  154. early_stop=False,
  155. early_stop_patience=5,
  156. use_vdl=True):
  157. """
  158. Train the model.
  159. Args:
  160. num_epochs(int): The number of epochs.
  161. train_dataset(paddlex.dataset): Training dataset.
  162. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  163. eval_dataset(paddlex.dataset, optional):
  164. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  165. optimizer(paddle.optimizer.Optimizer or None, optional):
  166. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  167. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  168. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  169. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  170. pretrain_weights(str or None, optional):
  171. None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
  172. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  173. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  174. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  175. lr_decay_epochs(List[int] or Tuple[int], optional):
  176. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  177. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  178. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  179. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  180. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  181. """
  182. self.labels = train_dataset.labels
  183. # build optimizer if not defined
  184. if optimizer is None:
  185. num_steps_each_epoch = len(train_dataset) // train_batch_size
  186. self.optimizer = self.default_optimizer(
  187. parameters=self.net.parameters(),
  188. learning_rate=learning_rate,
  189. warmup_steps=warmup_steps,
  190. warmup_start_lr=warmup_start_lr,
  191. lr_decay_epochs=lr_decay_epochs,
  192. lr_decay_gamma=lr_decay_gamma,
  193. num_steps_each_epoch=num_steps_each_epoch)
  194. else:
  195. self.optimizer = optimizer
  196. # initiate weights
  197. if pretrain_weights is not None and not osp.exists(pretrain_weights):
  198. if pretrain_weights not in ['IMAGENET']:
  199. logging.warning(
  200. "Path of pretrain_weights('{}') does not exist!".format(
  201. pretrain_weights))
  202. logging.warning(
  203. "Pretrain_weights is forcibly set to 'IMAGENET'. "
  204. "If don't want to use pretrain weights, "
  205. "set pretrain_weights to be None.")
  206. pretrain_weights = 'IMAGENET'
  207. pretrained_dir = osp.join(save_dir, 'pretrain')
  208. self.net_initialize(
  209. pretrain_weights=pretrain_weights, save_dir=pretrained_dir)
  210. # start train loop
  211. self.train_loop(
  212. num_epochs=num_epochs,
  213. train_dataset=train_dataset,
  214. train_batch_size=train_batch_size,
  215. eval_dataset=eval_dataset,
  216. save_interval_epochs=save_interval_epochs,
  217. log_interval_steps=log_interval_steps,
  218. save_dir=save_dir,
  219. early_stop=early_stop,
  220. early_stop_patience=early_stop_patience,
  221. use_vdl=use_vdl)
  222. def quant_aware_train(self,
  223. num_epochs,
  224. train_dataset,
  225. train_batch_size=64,
  226. eval_dataset=None,
  227. optimizer=None,
  228. save_interval_epochs=1,
  229. log_interval_steps=10,
  230. save_dir='output',
  231. learning_rate=.000025,
  232. warmup_steps=0,
  233. warmup_start_lr=0.0,
  234. lr_decay_epochs=(30, 60, 90),
  235. lr_decay_gamma=0.1,
  236. early_stop=False,
  237. early_stop_patience=5,
  238. use_vdl=True,
  239. quant_config=None):
  240. """
  241. Quantization-aware training.
  242. Args:
  243. num_epochs(int): The number of epochs.
  244. train_dataset(paddlex.dataset): Training dataset.
  245. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
  246. eval_dataset(paddlex.dataset, optional):
  247. Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
  248. optimizer(paddle.optimizer.Optimizer or None, optional):
  249. Optimizer used for training. If None, a default optimizer is used. Defaults to None.
  250. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
  251. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
  252. save_dir(str, optional): Directory to save the model. Defaults to 'output'.
  253. learning_rate(float, optional): Learning rate for training. Defaults to .025.
  254. warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
  255. warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
  256. lr_decay_epochs(List[int] or Tuple[int], optional):
  257. Epoch milestones for learning rate decay. Defaults to (20, 60, 90).
  258. lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay, default .1.
  259. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
  260. early_stop_patience(int, optional): Early stop patience. Defaults to 5.
  261. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
  262. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
  263. configuration will be used. Defaults to None.
  264. """
  265. self._prepare_qat(quant_config)
  266. self.train(
  267. num_epochs=num_epochs,
  268. train_dataset=train_dataset,
  269. train_batch_size=train_batch_size,
  270. eval_dataset=eval_dataset,
  271. optimizer=optimizer,
  272. save_interval_epochs=save_interval_epochs,
  273. log_interval_steps=log_interval_steps,
  274. save_dir=save_dir,
  275. pretrain_weights=None,
  276. learning_rate=learning_rate,
  277. warmup_steps=warmup_steps,
  278. warmup_start_lr=warmup_start_lr,
  279. lr_decay_epochs=lr_decay_epochs,
  280. lr_decay_gamma=lr_decay_gamma,
  281. early_stop=early_stop,
  282. early_stop_patience=early_stop_patience,
  283. use_vdl=use_vdl)
  284. def evaluate(self, eval_dataset, batch_size=1, return_details=False):
  285. """
  286. Evaluate the model.
  287. Args:
  288. eval_dataset(paddlex.dataset): Evaluation dataset.
  289. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
  290. return_details(bool, optional): Whether to return evaluation details. Defaults to False.
  291. Returns:
  292. collections.OrderedDict with key-value pairs: {"acc1": `top 1 accuracy`, "acc5": `top 5 accuracy`}.
  293. """
  294. # 给transform添加arrange操作
  295. arrange_transforms(
  296. model_type=self.model_type,
  297. transforms=eval_dataset.transforms,
  298. mode='eval')
  299. self.net.eval()
  300. nranks = paddle.distributed.get_world_size()
  301. local_rank = paddle.distributed.get_rank()
  302. if nranks > 1:
  303. # Initialize parallel environment if not done.
  304. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
  305. ):
  306. paddle.distributed.init_parallel_env()
  307. self.eval_data_loader = self.build_data_loader(
  308. eval_dataset, batch_size=batch_size, mode='eval')
  309. eval_metrics = TrainingStats()
  310. eval_details = None
  311. if return_details:
  312. eval_details = list()
  313. logging.info(
  314. "Start to evaluate(total_samples={}, total_steps={})...".format(
  315. eval_dataset.num_samples,
  316. math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
  317. with paddle.no_grad():
  318. for step, data in enumerate(self.eval_data_loader()):
  319. outputs = self.run(self.net, data, mode='eval')
  320. if return_details:
  321. eval_details.append(outputs['prediction'].numpy())
  322. outputs.pop('prediction')
  323. eval_metrics.update(outputs)
  324. if return_details:
  325. return eval_metrics.get(), eval_details
  326. else:
  327. return eval_metrics.get()
  328. def predict(self, img_file, transforms=None, topk=1):
  329. """
  330. Do inference.
  331. Args:
  332. img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
  333. Image path or decoded image data in a BGR format, which also could constitute a list,
  334. meaning all images to be predicted as a mini-batch.
  335. transforms(paddlex.transforms.Compose or None, optional):
  336. Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
  337. topk(int, optional): Keep topk results in prediction. Defaults to 1.
  338. Returns:
  339. If img_file is a string or np.array, the result is a dict with key-value pairs:
  340. {"category_id": `category_id`, "category": `category`, "score": `score`}.
  341. If img_file is a list, the result is a list composed of dicts with the corresponding fields:
  342. category_id(int): the predicted category ID
  343. category(str): category name
  344. score(float): confidence
  345. """
  346. if transforms is None and not hasattr(self, 'test_transforms'):
  347. raise Exception("transforms need to be defined, now is None.")
  348. if transforms is None:
  349. transforms = self.test_transforms
  350. true_topk = min(self.num_classes, topk)
  351. if isinstance(img_file, (str, np.ndarray)):
  352. images = [img_file]
  353. else:
  354. images = img_file
  355. im = self._preprocess(images, transforms, self.model_type)
  356. self.net.eval()
  357. with paddle.no_grad():
  358. outputs = self.run(self.net, im, mode='test')
  359. prediction = outputs['prediction'].numpy()
  360. prediction = self._postprocess(prediction, true_topk, self.labels)
  361. if isinstance(img_file, (str, np.ndarray)):
  362. prediction = prediction[0]
  363. return prediction
  364. def _preprocess(self, images, transforms, model_type):
  365. arrange_transforms(
  366. model_type=model_type, transforms=transforms, mode='test')
  367. batch_im = list()
  368. for im in images:
  369. sample = {'image': im}
  370. batch_im.append(transforms(sample))
  371. batch_im = to_tensor(batch_im)
  372. return batch_im,
  373. def _postprocess(self, results, true_topk, labels):
  374. preds = list()
  375. for i, pred in enumerate(results):
  376. pred_label = np.argsort(pred)[::-1][:true_topk]
  377. preds.append([{
  378. 'category_id': l,
  379. 'category': labels[l],
  380. 'score': results[i][l]
  381. } for l in pred_label])
  382. return preds
  383. class ResNet18(BaseClassifier):
  384. def __init__(self, num_classes=1000):
  385. super(ResNet18, self).__init__(
  386. model_name='ResNet18', num_classes=num_classes)
  387. class ResNet34(BaseClassifier):
  388. def __init__(self, num_classes=1000):
  389. super(ResNet34, self).__init__(
  390. model_name='ResNet34', num_classes=num_classes)
  391. class ResNet50(BaseClassifier):
  392. def __init__(self, num_classes=1000):
  393. super(ResNet50, self).__init__(
  394. model_name='ResNet50', num_classes=num_classes)
  395. class ResNet101(BaseClassifier):
  396. def __init__(self, num_classes=1000):
  397. super(ResNet101, self).__init__(
  398. model_name='ResNet101', num_classes=num_classes)
  399. class ResNet152(BaseClassifier):
  400. def __init__(self, num_classes=1000):
  401. super(ResNet152, self).__init__(
  402. model_name='ResNet152', num_classes=num_classes)
  403. class ResNet18_vd(BaseClassifier):
  404. def __init__(self, num_classes=1000):
  405. super(ResNet18_vd, self).__init__(
  406. model_name='ResNet18_vd', num_classes=num_classes)
  407. class ResNet34_vd(BaseClassifier):
  408. def __init__(self, num_classes=1000):
  409. super(ResNet34_vd, self).__init__(
  410. model_name='ResNet34_vd', num_classes=num_classes)
  411. class ResNet50_vd(BaseClassifier):
  412. def __init__(self, num_classes=1000):
  413. super(ResNet50_vd, self).__init__(
  414. model_name='ResNet50_vd', num_classes=num_classes)
  415. class ResNet50_vd_ssld(BaseClassifier):
  416. def __init__(self, num_classes=1000):
  417. super(ResNet50_vd_ssld, self).__init__(
  418. model_name='ResNet50_vd',
  419. num_classes=num_classes,
  420. lr_mult_list=[.1, .1, .2, .2, .3])
  421. self.model_name = 'ResNet50_vd_ssld'
  422. class ResNet101_vd(BaseClassifier):
  423. def __init__(self, num_classes=1000):
  424. super(ResNet101_vd, self).__init__(
  425. model_name='ResNet101_vd', num_classes=num_classes)
  426. class ResNet101_vd_ssld(BaseClassifier):
  427. def __init__(self, num_classes=1000):
  428. super(ResNet101_vd_ssld, self).__init__(
  429. model_name='ResNet101_vd',
  430. num_classes=num_classes,
  431. lr_mult_list=[.1, .1, .2, .2, .3])
  432. self.model_name = 'ResNet101_vd_ssld'
  433. class ResNet152_vd(BaseClassifier):
  434. def __init__(self, num_classes=1000):
  435. super(ResNet152_vd, self).__init__(
  436. model_name='ResNet152_vd', num_classes=num_classes)
  437. class ResNet200_vd(BaseClassifier):
  438. def __init__(self, num_classes=1000):
  439. super(ResNet200_vd, self).__init__(
  440. model_name='ResNet200_vd', num_classes=num_classes)
  441. class AlexNet(BaseClassifier):
  442. def __init__(self, num_classes=1000):
  443. super(AlexNet, self).__init__(
  444. model_name='AlexNet', num_classes=num_classes)
  445. def get_test_inputs(self, image_shape):
  446. if image_shape == [-1, -1]:
  447. image_shape = [224, 224]
  448. logging.info('When exporting inference model for {},'.format(
  449. self.__class__.__name__
  450. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  451. )
  452. input_spec = [
  453. InputSpec(
  454. shape=[None, 3] + image_shape, name='image', dtype='float32')
  455. ]
  456. return input_spec
  457. class DarkNet53(BaseClassifier):
  458. def __init__(self, num_classes=1000):
  459. super(DarkNet53, self).__init__(
  460. model_name='DarkNet53', num_classes=num_classes)
  461. class MobileNetV1(BaseClassifier):
  462. def __init__(self, num_classes=1000, scale=1.0):
  463. supported_scale = [.25, .5, .75, 1.0]
  464. if scale not in supported_scale:
  465. logging.warning("scale={} is not supported by MobileNetV1, "
  466. "scale is forcibly set to 1.0".format(scale))
  467. scale = 1.0
  468. if scale == 1:
  469. model_name = 'MobileNetV1'
  470. else:
  471. model_name = 'MobileNetV1_x' + str(scale).replace('.', '_')
  472. self.scale = scale
  473. super(MobileNetV1, self).__init__(
  474. model_name=model_name, num_classes=num_classes)
  475. class MobileNetV2(BaseClassifier):
  476. def __init__(self, num_classes=1000, scale=1.0):
  477. supported_scale = [.25, .5, .75, 1.0, 1.5, 2.0]
  478. if scale not in supported_scale:
  479. logging.warning("scale={} is not supported by MobileNetV2, "
  480. "scale is forcibly set to 1.0".format(scale))
  481. scale = 1.0
  482. if scale == 1:
  483. model_name = 'MobileNetV2'
  484. else:
  485. model_name = 'MobileNetV2_x' + str(scale).replace('.', '_')
  486. super(MobileNetV2, self).__init__(
  487. model_name=model_name, num_classes=num_classes)
  488. class MobileNetV3_small(BaseClassifier):
  489. def __init__(self, num_classes=1000, scale=1.0):
  490. supported_scale = [.35, .5, .75, 1.0, 1.25]
  491. if scale not in supported_scale:
  492. logging.warning("scale={} is not supported by MobileNetV3_small, "
  493. "scale is forcibly set to 1.0".format(scale))
  494. scale = 1.0
  495. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  496. '_')
  497. super(MobileNetV3_small, self).__init__(
  498. model_name=model_name, num_classes=num_classes)
  499. class MobileNetV3_small_ssld(BaseClassifier):
  500. def __init__(self, num_classes=1000, scale=1.0):
  501. supported_scale = [.35, 1.0]
  502. if scale not in supported_scale:
  503. logging.warning(
  504. "scale={} is not supported by MobileNetV3_small_ssld, "
  505. "scale is forcibly set to 1.0".format(scale))
  506. scale = 1.0
  507. model_name = 'MobileNetV3_small_x' + str(float(scale)).replace('.',
  508. '_')
  509. super(MobileNetV3_small_ssld, self).__init__(
  510. model_name=model_name, num_classes=num_classes)
  511. self.model_name = model_name + '_ssld'
  512. class MobileNetV3_large(BaseClassifier):
  513. def __init__(self, num_classes=1000, scale=1.0):
  514. supported_scale = [.35, .5, .75, 1.0, 1.25]
  515. if scale not in supported_scale:
  516. logging.warning("scale={} is not supported by MobileNetV3_large, "
  517. "scale is forcibly set to 1.0".format(scale))
  518. scale = 1.0
  519. model_name = 'MobileNetV3_large_x' + str(float(scale)).replace('.',
  520. '_')
  521. super(MobileNetV3_large, self).__init__(
  522. model_name=model_name, num_classes=num_classes)
  523. class MobileNetV3_large_ssld(BaseClassifier):
  524. def __init__(self, num_classes=1000):
  525. super(MobileNetV3_large_ssld, self).__init__(
  526. model_name='MobileNetV3_large_x1_0', num_classes=num_classes)
  527. self.model_name = 'MobileNetV3_large_x1_0_ssld'
  528. class DenseNet121(BaseClassifier):
  529. def __init__(self, num_classes=1000):
  530. super(DenseNet121, self).__init__(
  531. model_name='DenseNet121', num_classes=num_classes)
  532. class DenseNet161(BaseClassifier):
  533. def __init__(self, num_classes=1000):
  534. super(DenseNet161, self).__init__(
  535. model_name='DenseNet161', num_classes=num_classes)
  536. class DenseNet169(BaseClassifier):
  537. def __init__(self, num_classes=1000):
  538. super(DenseNet169, self).__init__(
  539. model_name='DenseNet169', num_classes=num_classes)
  540. class DenseNet201(BaseClassifier):
  541. def __init__(self, num_classes=1000):
  542. super(DenseNet201, self).__init__(
  543. model_name='DenseNet201', num_classes=num_classes)
  544. class DenseNet264(BaseClassifier):
  545. def __init__(self, num_classes=1000):
  546. super(DenseNet264, self).__init__(
  547. model_name='DenseNet264', num_classes=num_classes)
  548. class HRNet_W18_C(BaseClassifier):
  549. def __init__(self, num_classes=1000):
  550. super(HRNet_W18_C, self).__init__(
  551. model_name='HRNet_W18_C', num_classes=num_classes)
  552. class HRNet_W30_C(BaseClassifier):
  553. def __init__(self, num_classes=1000):
  554. super(HRNet_W30_C, self).__init__(
  555. model_name='HRNet_W30_C', num_classes=num_classes)
  556. class HRNet_W32_C(BaseClassifier):
  557. def __init__(self, num_classes=1000):
  558. super(HRNet_W32_C, self).__init__(
  559. model_name='HRNet_W32_C', num_classes=num_classes)
  560. class HRNet_W40_C(BaseClassifier):
  561. def __init__(self, num_classes=1000):
  562. super(HRNet_W40_C, self).__init__(
  563. model_name='HRNet_W40_C', num_classes=num_classes)
  564. class HRNet_W44_C(BaseClassifier):
  565. def __init__(self, num_classes=1000):
  566. super(HRNet_W44_C, self).__init__(
  567. model_name='HRNet_W44_C', num_classes=num_classes)
  568. class HRNet_W48_C(BaseClassifier):
  569. def __init__(self, num_classes=1000):
  570. super(HRNet_W48_C, self).__init__(
  571. model_name='HRNet_W48_C', num_classes=num_classes)
  572. class HRNet_W64_C(BaseClassifier):
  573. def __init__(self, num_classes=1000):
  574. super(HRNet_W64_C, self).__init__(
  575. model_name='HRNet_W64_C', num_classes=num_classes)
  576. class Xception41(BaseClassifier):
  577. def __init__(self, num_classes=1000):
  578. super(Xception41, self).__init__(
  579. model_name='Xception41', num_classes=num_classes)
  580. class Xception65(BaseClassifier):
  581. def __init__(self, num_classes=1000):
  582. super(Xception65, self).__init__(
  583. model_name='Xception65', num_classes=num_classes)
  584. class Xception71(BaseClassifier):
  585. def __init__(self, num_classes=1000):
  586. super(Xception71, self).__init__(
  587. model_name='Xception71', num_classes=num_classes)
  588. class ShuffleNetV2(BaseClassifier):
  589. def __init__(self, num_classes=1000, scale=1.0):
  590. supported_scale = [.25, .33, .5, 1.0, 1.5, 2.0]
  591. if scale not in supported_scale:
  592. logging.warning("scale={} is not supported by ShuffleNetV2, "
  593. "scale is forcibly set to 1.0".format(scale))
  594. scale = 1.0
  595. model_name = 'ShuffleNetV2_x' + str(float(scale)).replace('.', '_')
  596. super(ShuffleNetV2, self).__init__(
  597. model_name=model_name, num_classes=num_classes)
  598. def get_test_inputs(self, image_shape):
  599. if image_shape == [-1, -1]:
  600. image_shape = [224, 224]
  601. logging.info('When exporting inference model for {},'.format(
  602. self.__class__.__name__
  603. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  604. )
  605. input_spec = [
  606. InputSpec(
  607. shape=[None, 3] + image_shape, name='image', dtype='float32')
  608. ]
  609. return input_spec
  610. class ShuffleNetV2_swish(BaseClassifier):
  611. def __init__(self, num_classes=1000):
  612. super(ShuffleNetV2_swish, self).__init__(
  613. model_name='ShuffleNetV2_x1_5', num_classes=num_classes)
  614. def get_test_inputs(self, image_shape):
  615. if image_shape == [-1, -1]:
  616. image_shape = [224, 224]
  617. logging.info('When exporting inference model for {},'.format(
  618. self.__class__.__name__
  619. ) + ' if image_shape is [-1, -1], it will be forcibly set to [224, 224]'
  620. )
  621. input_spec = [
  622. InputSpec(
  623. shape=[None, 3] + image_shape, name='image', dtype='float32')
  624. ]
  625. return input_spec