PaddleX的安卓端部署基于Paddle Lite实现,部署的流程如下,首先将训练好的模型导出为inference model,然后对模型进行优化,最后使用Paddle Lite预测库进行部署,Paddle Lite的详细介绍和使用可参考:Paddle Lite文档
PaddleX --> Inference Model --> Paddle Lite Opt --> Paddle Lite Inference
文章简介:
参考导出inference模型将模型导出为inference格式模型。
目前提供了两种方法将Paddle模型优化为Paddle Lite模型:
11cbd50e),部署语义分割DeepLab模型和Unet模型时只能采用bin文件优化方式。pip install paddlelite
python export_lite.py --model_dir /path/to/inference_model --save_file /path/to/lite_model_name --place place/to/run
其中
export_lite.py脚本请至github下载:https://github.com/PaddlePaddle/PaddleX/blob/develop/deploy/lite/export_lite.py
| 参数 | 说明 |
|---|---|
| --model_dir | 预测模型所在路径,包含"__model__", "__params__", "model.yml"文件 |
| --save_file | 模型输出的名称,假设为/path/to/lite_model_name, 则输出为路径为/path/to/lite_model_name.nb |
| --place | 运行的平台,可选:arm|opencl|x86|npu|xpu|rknpu|apu,安卓部署请选择arm |
首先下载并解压: 模型优化工具opt
./opt --model_file=<model_path> \
--param_file=<param_path> \
--valid_targets=arm \
--optimize_out_type=naive_buffer \
--optimize_out=model_output_name
| 参数 | 说明 |
|---|---|
| --model_file | 导出inference模型中包含的网络结构文件:__model__所在的路径 |
| --param_file | 导出inference模型中包含的参数文件:__params__所在的路径 |
| --valid_targets | 指定模型可执行的backend,这里请指定为arm |
| --optimize_out_type | 输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化,这里请指定为naive_buffer |
详细的使用方法和参数含义请参考: 使用opt转化模型
PaddleX提供了基于PaddleX Android SDK的安卓demo,位于/PaddleX/deploy/lite/android/demo,该demo已预置了MobilenetV2的模型参数,用户可直接将该demo导入Android Studio后运行体验,同时也支持用户将预置的Mobilenetv2模型参数替换成其他PaddleX导出的检测或分割模型进行预测。
/PaddleX/deploy/lite/android/demo目录,然后点击右下角的"Open"按钮,导入工程;注意:在工程构建的过程中会远程下载Mobilenetv2模型、yml配置文件、测试的图片,以及PaddleX Android SDK。
该demo还支持用户自定义模型来进行预测,可帮助用户快速验证自己训练好的模型,首先我们已经根据step1~step2描述,准备好了Lite模型(.nb文件)和yml配置文件(注意:导出Lite模型时需指定--place=arm),然后在Android Studio的project视图中:
/src/main/assets/model/目录下, 根据.nb文件的名字,修改文件/src/main/res/values/strings.xml中的MODEL_PATH_DEFAULT;/src/main/assets/config/目录下,根据.yml文件的名字,修改文件/src/main/res/values/strings.xml中的YAML_PATH_DEFAULT;/src/main/assets/images/目录下,根据图片文件的名字,修改文件/src/main/res/values/strings.xml中的IMAGE_PATH_DEFAULT;PaddleX Android SDK是PaddleX基于Paddle Lite开发的安卓端AI推理工具,以PaddleX导出的Yaml配置文件为接口,针对不同的模型实现图片的预处理,后处理,并进行可视化,开发者可集成到业务中。 该SDK自底向上主要包括:Paddle Lite推理引擎层,Paddle Lite接口层以及PaddleX业务层。
首先下载并解压PaddleX Android SDK,得到paddlex.aar文件,将拷贝到android工程目录app/libs/下面,然后为app的build.gradle添加依赖:
dependencies {
implementation fileTree(include: ['*.jar','*aar'], dir: 'libs')
}
import com.baidu.paddlex.Predictor;
import com.baidu.paddlex.config.ConfigParser;
import com.baidu.paddlex.postprocess.DetResult;
import com.baidu.paddlex.postprocess.SegResult;
import com.baidu.paddlex.postprocess.ClsResult;
import com.baidu.paddlex.visual.Visualize;
// Predictor
Predictor predictor = new Predictor();
// model config
ConfigParser configParser = new ConfigParser();
// Visualize
Visualize visualize = new Visualize();
// image to predict
Mat predictMat;
// initialize
configParser.init(context, model_path, yaml_path, cpu_thread_num, cpu_power_mode);
visualize.init(configParser.getNumClasses());
predictor.init(context, configParser)
// run model
if (predictImage != null && predictor.isLoaded()) {
predictor.setInputMat(predictMat);
runModel();
}
// get result & visualize
if (configParser.getModelType().equalsIgnoreCase("segmenter")) {
SegResult segResult = predictor.getSegResult();
Mat visualizeMat = visualize.draw(segResult, predictMat, predictor.getImageBlob());
} else if (configParser.getModelType().equalsIgnoreCase("detector")) {
DetResult detResult = predictor.getDetResult();
Mat visualizeMat = visualize.draw(detResult, predictMat);
} else if (configParser.getModelType().equalsIgnoreCase("classifier")) {
ClsResult clsResult = predictor.getClsResult();
}
注意:Result所有的成员变量以java bean的方式获取。
com.baidu.paddlex.postprocess.ClsResult
- type (String|static): 值为"cls"。
- categoryId (int): 类别ID。
- category (String): 类别名称。
- score (float): 预测置信度。
com.baidu.paddlex.postprocess.DetResult
- DetResult.Box 模型预测的box结果。
- type (String|static): 值为"det"。
- boxes (List): 模型预测的box结果。
com.baidu.paddlex.postprocess.DetResult.BoxFields
- categoryId (int): 类别ID。
- category (String): 类别名称。
- score (float): 预测框的置信度。
- coordinate (float[4]): 预测框的坐标值{xmin, ymin, xmax, ymax}。
com.baidu.paddlex.postprocess.SegResultNested classes
- SegResult.Mask: 模型预测的mask结果。
Fields
- type (String|static): 值为"Seg"。
- mask (SegResult.Mask): 模型预测的mask结果。
com.baidu.paddlex.postprocess.SegResult.MaskFields
- scoreData (float[]): 模型预测在各个类别的置信度,长度为: 1 * numClass * H * W
- scoreShape (long[4]): scoreData的shape信息,[1, numClass, H, W]
- labelData (long[]): 模型预测置信度最高的label,长度为: 1 * H * W * 1
- labelShape (long[4]): labelData的shape信息,[1, H, W, 1]
4.4 SDK二次开发
- 打开Android Studio新建项目(或加载已有项目)。点击菜单File->New->Import Module,导入工程
/PaddleX/deploy/lite/android/sdk, Project视图会新增名为sdk的module在app的build.grade里面添加依赖:
dependencies { implementation project(':sdk') }源代码位于sdk/main/java/下,修改源码进行二次开发后,点击菜单栏的Build->Run 'sdk'按钮可编译生成aar,文件位于sdk/build/outputs/aar/路径下。