| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- import paddlex as pdx
- from paddlex.seg import transforms
- # 定义训练和验证时的transforms
- # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/seg_transforms.html
- train_transforms = transforms.Compose([
- transforms.RandomPaddingCrop(crop_size=769),
- transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(),
- transforms.Normalize()
- ])
- eval_transforms = transforms.Compose(
- [transforms.Padding(target_size=769), transforms.Normalize()])
- # 定义训练和验证所用的数据集
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-segdataset
- train_dataset = pdx.datasets.SegDataset(
- data_dir='dataset',
- file_list='dataset/train_list.txt',
- label_list='dataset/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.SegDataset(
- data_dir='dataset',
- file_list='dataset/val_list.txt',
- label_list='dataset/labels.txt',
- transforms=eval_transforms)
- ## 初始化模型,并进行训练
- ## 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
- num_classes = len(train_dataset.labels)
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#paddlex-seg-deeplabv3p
- model = pdx.seg.DeepLabv3p(
- num_classes=num_classes,
- backbone='MobileNetV3_large_x1_0_ssld',
- pooling_crop_size=(769, 769))
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#train
- # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
- model.train(
- num_epochs=400,
- train_dataset=train_dataset,
- train_batch_size=16,
- eval_dataset=eval_dataset,
- learning_rate=0.01,
- save_interval_epochs=10,
- pretrain_weights='CITYSCAPES',
- save_dir='output/deeplabv3p_mobilenetv3_large_ssld',
- use_vdl=True)
|