train.py 2.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. import paddlex as pdx
  6. from paddlex.seg import transforms
  7. # 定义训练和验证时的transforms
  8. # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/seg_transforms.html
  9. train_transforms = transforms.Compose([
  10. transforms.RandomPaddingCrop(crop_size=769),
  11. transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(),
  12. transforms.Normalize()
  13. ])
  14. eval_transforms = transforms.Compose(
  15. [transforms.Padding(target_size=769), transforms.Normalize()])
  16. # 定义训练和验证所用的数据集
  17. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-segdataset
  18. train_dataset = pdx.datasets.SegDataset(
  19. data_dir='dataset',
  20. file_list='dataset/train_list.txt',
  21. label_list='dataset/labels.txt',
  22. transforms=train_transforms,
  23. shuffle=True)
  24. eval_dataset = pdx.datasets.SegDataset(
  25. data_dir='dataset',
  26. file_list='dataset/val_list.txt',
  27. label_list='dataset/labels.txt',
  28. transforms=eval_transforms)
  29. ## 初始化模型,并进行训练
  30. ## 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
  31. num_classes = len(train_dataset.labels)
  32. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#paddlex-seg-deeplabv3p
  33. model = pdx.seg.DeepLabv3p(
  34. num_classes=num_classes,
  35. backbone='MobileNetV3_large_x1_0_ssld',
  36. pooling_crop_size=(769, 769))
  37. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#train
  38. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  39. model.train(
  40. num_epochs=400,
  41. train_dataset=train_dataset,
  42. train_batch_size=16,
  43. eval_dataset=eval_dataset,
  44. learning_rate=0.01,
  45. save_interval_epochs=10,
  46. pretrain_weights='CITYSCAPES',
  47. save_dir='output/deeplabv3p_mobilenetv3_large_ssld',
  48. use_vdl=True)