| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- from paddlex.det import transforms
- import paddlex as pdx
- # 下载和解压小度熊分拣数据集
- xiaoduxiong_dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
- pdx.utils.download_and_decompress(xiaoduxiong_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html
- train_transforms = transforms.Compose([
- transforms.RandomHorizontalFlip(), transforms.Normalize(),
- transforms.ResizeByShort(
- short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32)
- ])
- eval_transforms = transforms.Compose([
- transforms.Normalize(), transforms.ResizeByShort(
- short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32)
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-cocodetection
- train_dataset = pdx.datasets.CocoDetection(
- data_dir='xiaoduxiong_ins_det/JPEGImages',
- ann_file='xiaoduxiong_ins_det/train.json',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.CocoDetection(
- data_dir='xiaoduxiong_ins_det/JPEGImages',
- ann_file='xiaoduxiong_ins_det/val.json',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
- # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
- num_classes = len(train_dataset.labels) + 1
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/instance_segmentation.html#maskrcnn
- model = pdx.det.MaskRCNN(num_classes=num_classes, backbone='ResNet50')
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/instance_segmentation.html#train
- # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
- model.train(
- num_epochs=12,
- train_dataset=train_dataset,
- train_batch_size=1,
- eval_dataset=eval_dataset,
- learning_rate=0.00125,
- warmup_steps=10,
- lr_decay_epochs=[8, 11],
- save_dir='output/mask_rcnn_r50_fpn',
- use_vdl=True)
|