faster_rcnn_r50_fpn.py 1.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. import os
  2. from paddlex.det import transforms
  3. import paddlex as pdx
  4. # 下载和解压昆虫检测数据集
  5. insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  6. pdx.utils.download_and_decompress(insect_dataset, path='./')
  7. # 定义训练和验证时的transforms
  8. train_transforms = transforms.Compose([
  9. transforms.RandomHorizontalFlip(), transforms.Normalize(),
  10. transforms.ResizeByShort(
  11. short_size=800, max_size=1333), transforms.Padding(coarsest_stride=32)
  12. ])
  13. eval_transforms = transforms.Compose([
  14. transforms.Normalize(),
  15. transforms.ResizeByShort(
  16. short_size=800, max_size=1333),
  17. transforms.Padding(coarsest_stride=32),
  18. ])
  19. # 定义训练和验证所用的数据集
  20. train_dataset = pdx.datasets.VOCDetection(
  21. data_dir='insect_det',
  22. file_list='insect_det/train_list.txt',
  23. label_list='insect_det/labels.txt',
  24. transforms=train_transforms,
  25. shuffle=True)
  26. eval_dataset = pdx.datasets.VOCDetection(
  27. data_dir='insect_det',
  28. file_list='insect_det/val_list.txt',
  29. label_list='insect_det/labels.txt',
  30. transforms=eval_transforms)
  31. # 初始化模型,并进行训练
  32. # 可使用VisualDL查看训练指标
  33. # VisualDL启动方式: visualdl --logdir output/faster_rcnn_r50_fpn/vdl_log --port 8001
  34. # 浏览器打开 https://0.0.0.0:8001即可
  35. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  36. # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
  37. num_classes = len(train_dataset.labels) + 1
  38. model = pdx.det.FasterRCNN(num_classes=num_classes, backbone='ResNet50_vd')
  39. model.train(
  40. num_epochs=12,
  41. train_dataset=train_dataset,
  42. train_batch_size=2,
  43. eval_dataset=eval_dataset,
  44. learning_rate=0.0025,
  45. lr_decay_epochs=[8, 11],
  46. save_dir='output/faster_rcnn_r50_fpn',
  47. use_vdl=True)