yolov3_darknet53.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. import os
  2. from paddlex.det import transforms
  3. import paddlex as pdx
  4. # 下载和解压昆虫检测数据集
  5. insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  6. pdx.utils.download_and_decompress(insect_dataset, path='./')
  7. # 定义训练和验证时的transforms
  8. train_transforms = transforms.Compose([
  9. transforms.MixupImage(mixup_epoch=250),
  10. transforms.RandomDistort(),
  11. transforms.RandomExpand(),
  12. transforms.RandomCrop(),
  13. transforms.Resize(
  14. target_size=608, interp='RANDOM'),
  15. transforms.RandomHorizontalFlip(),
  16. transforms.Normalize(),
  17. ])
  18. eval_transforms = transforms.Compose([
  19. transforms.Resize(
  20. target_size=608, interp='CUBIC'),
  21. transforms.Normalize(),
  22. ])
  23. # 定义训练和验证所用的数据集
  24. train_dataset = pdx.datasets.VOCDetection(
  25. data_dir='insect_det',
  26. file_list='insect_det/train_list.txt',
  27. label_list='insect_det/labels.txt',
  28. transforms=train_transforms,
  29. shuffle=True)
  30. eval_dataset = pdx.datasets.VOCDetection(
  31. data_dir='insect_det',
  32. file_list='insect_det/val_list.txt',
  33. label_list='insect_det/labels.txt',
  34. transforms=eval_transforms)
  35. # 初始化模型,并进行训练
  36. # 可使用VisualDL查看训练指标
  37. # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
  38. # 浏览器打开 https://0.0.0.0:8001即可
  39. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  40. num_classes = len(train_dataset.labels)
  41. model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
  42. model.train(
  43. num_epochs=270,
  44. train_dataset=train_dataset,
  45. train_batch_size=8,
  46. eval_dataset=eval_dataset,
  47. learning_rate=0.000125,
  48. lr_decay_epochs=[210, 240],
  49. save_dir='output/yolov3_darknet53',
  50. use_vdl=True)