semantic_segmentation.py 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.semantic_segmentation.model_list import MODELS
  17. from ..components import *
  18. from ..results import SegResult
  19. from .base import CVPredictor
  20. class SegPredictor(CVPredictor):
  21. entities = MODELS
  22. _FUNC_MAP = {}
  23. register = FuncRegister(_FUNC_MAP)
  24. def _build_components(self):
  25. self._add_component(ReadImage(format="RGB"))
  26. self._add_component(ToCHWImage())
  27. for cfg in self.config["Deploy"]["transforms"]:
  28. tf_key = cfg["type"]
  29. func = self._FUNC_MAP[tf_key]
  30. cfg.pop("type")
  31. args = cfg
  32. op = func(self, **args) if args else func(self)
  33. self._add_component(op)
  34. predictor = ImagePredictor(
  35. model_dir=self.model_dir,
  36. model_prefix=self.MODEL_FILE_PREFIX,
  37. option=self.pp_option,
  38. )
  39. self._add_component(("Predictor", predictor))
  40. @register("Resize")
  41. def build_resize(
  42. self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR"
  43. ):
  44. assert target_size
  45. op = Resize(
  46. target_size=target_size,
  47. keep_ratio=keep_ratio,
  48. size_divisor=size_divisor,
  49. interp=interp,
  50. )
  51. return op
  52. @register("ResizeByLong")
  53. def build_resizebylong(self, long_size):
  54. assert long_size
  55. return ResizeByLong(
  56. target_long_edge=long_size, size_divisor=size_divisor, interp=interp
  57. )
  58. @register("ResizeByShort")
  59. def build_resizebylong(self, short_size):
  60. assert short_size
  61. return ResizeByLong(
  62. target_long_edge=short_size, size_divisor=size_divisor, interp=interp
  63. )
  64. @register("Normalize")
  65. def build_normalize(
  66. self,
  67. mean=0.5,
  68. std=0.5,
  69. ):
  70. return Normalize(mean=mean, std=std)
  71. def _pack_res(self, single):
  72. keys = ["img_path", "pred"]
  73. return SegResult({key: single[key] for key in keys})