| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from urllib.parse import urlparse
- import ruamel.yaml
- from ...base import BaseConfig
- from ....utils.misc import abspath, convert_and_remove_types
- class BaseTSConfig(BaseConfig):
- """Base TS Config"""
- def update(self, dict_like_obj: list):
- """update self
- Args:
- dict_like_obj (dict): dict of pairs(key0.key1.idx.key2=value).
- """
- from paddlets.utils.config import merge_config_dicts
- dict_ = merge_config_dicts(dict_like_obj, self.dict)
- self.reset_from_dict(dict_)
- def load(self, config_file_path: str):
- """load config from yaml file
- Args:
- config_file_path (str): the path of yaml file.
- Raises:
- TypeError: the content of yaml file `config_file_path` error.
- """
- from paddlets.utils.config import parse_from_yaml
- dict_ = parse_from_yaml(config_file_path)
- if not isinstance(dict_, dict):
- raise TypeError
- self.reset_from_dict(dict_)
- def dump(self, config_file_path: str):
- """dump self to yaml file
- Args:
- config_file_path (str): the path to save self as yaml file.
- """
- yaml = ruamel.yaml.YAML()
- with open(config_file_path, "w", encoding="utf-8") as f:
- dict_to_dump = self.dict
- dict_to_dump = convert_and_remove_types(dict_to_dump)
- yaml.dump(dict_to_dump, f)
- def update_epochs(self, epochs: int):
- """update epochs setting
- Args:
- epochs (int): the epochs number value to set
- """
- self.update({"epoch": epochs})
- def update_to_static(self, dy2st: bool):
- """update config to set dynamic to static mode
- Args:
- dy2st (bool): whether or not to use the dynamic to static mode.
- """
- self.update({"to_static_train": dy2st})
- def update_amp(self, amp: str = "O2"):
- """update AMP settings
- Args:
- amp (None | str): the AMP level if it is not None or `OFF`.
- """
- _cfg = {
- "use_amp": True if amp is not None else False,
- "amp_level": amp,
- }
- self.update(_cfg)
- def update_weights(self, weight_path: str):
- """update weight path
- Args:
- weight_path (str): the local path of weight file to set.
- """
- self["weights"] = abspath(weight_path)
- def update_learning_rate(self, learning_rate: float):
- """update learning rate
- Args:
- learning_rate (float): the learning rate value to set.
- Raises:
- RuntimeError: Not able to update learning rate, because no LR scheduler config was found.
- """
- if "learning_rate" not in self.model["model_cfg"]["optimizer_params"]:
- raise RuntimeError(
- "Not able to update learning rate, because no LR scheduler config was found."
- )
- self.model["model_cfg"]["optimizer_params"]["learning_rate"] = float(
- learning_rate
- )
- def update_batch_size(self, batch_size: int, mode: str = "train"):
- """update batch size setting
- Args:
- batch_size (int): the batch size number to set.
- mode (str, optional): the mode that to be set batch size, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Raises:
- ValueError: `mode` error. `train` is supported only.
- """
- if mode == "train":
- self.set_val("batch_size", batch_size)
- else:
- raise ValueError(
- f"Setting `batch_size` in {repr(mode)} mode is not supported."
- )
- def update_pretrained_weights(self, weight_path: str):
- """update pretrained weight path
- Args:
- weight_path (str): the local path or url of pretrained weight file to set.
- Raises:
- RuntimeError: "Not able to update pretrained weight path, because no model config was found.
- TypeError: `weight_path` error. `str` and `None` are supported only.
- """
- if "model" not in self:
- raise RuntimeError(
- "Not able to update pretrained weight path, because no model config was found."
- )
- if isinstance(weight_path, str):
- if urlparse(weight_path).scheme == "":
- # If `weight_path` is a string but not URL (with scheme present),
- # it will be recognized as a local file path.
- weight_path = abspath(weight_path)
- else:
- if weight_path is not None:
- raise TypeError("`weight_path` must be string or None.")
- self.model["pretrain"] = weight_path
- def update_log_ranks(self, device):
- """update log ranks
- Args:
- device (str): the running device to set
- """
- # PaddleTS does not support multi-device training currently.
- pass
- def update_print_mem_info(self, print_mem_info: bool):
- """setting print memory info"""
- assert isinstance(print_mem_info, bool), "print_mem_info should be a bool"
- self.update({"print_mem_info": print_mem_info})
- def update_log_interval(self, log_interval: int):
- """update log interval(steps)
- Args:
- log_interval (int): the log interval value to set.
- """
- self.update({"log_interval": log_interval})
- def update_dataset(self, dataset_dir: str, dataset_type: str = None):
- """update dataset settings"""
- raise NotImplementedError
- def update_save_dir(self, save_dir: str):
- """update save directory
- Args:
- save_dir (str): the path to save outputs.
- """
- self["output_dir"] = abspath(save_dir)
- def get_epochs_iters(self) -> int:
- """get epochs
- Returns:
- int: the epochs value, i.e., `Global.epochs` in config.
- """
- if "epoch" in self:
- return self.epoch
- else:
- # Default iters
- return 1000
- def get_learning_rate(self) -> float:
- """get learning rate
- Returns:
- float: the learning rate value, i.e., `Optimizer.lr.learning_rate` in config.
- """
- if "learning_rate" not in self.model["model_cfg"]["optimizer_params"]:
- # Default lr
- return 0.0001
- else:
- return self.model["model_cfg"]["optimizer_params"]["learning_rate"]
- def get_batch_size(self, mode="train") -> int:
- """get batch size
- Args:
- mode (str, optional): the mode that to be get batch size value, must be one of 'train', 'eval', 'test'.
- Defaults to 'train'.
- Raises:
- ValueError: `mode` error. `train` is supported only.
- Returns:
- int: the batch size value of `mode`, i.e., `DataLoader.{mode}.sampler.batch_size` in config.
- """
- if mode == "train":
- if "batch_size" in self:
- return self.batch_size
- else:
- # Default batch size
- return 16
- else:
- raise ValueError(
- f"Getting `batch_size` in {repr(mode)} mode is not supported."
- )
|