| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ...base import BaseModel
- from ...base.utils.arg import CLIArgument
- from ...base.utils.subprocess import CompletedProcess
- from ....utils.device import parse_device
- from ....utils.misc import abspath
- from ....utils.errors import raise_unsupported_api_error
- class TSModel(BaseModel):
- """TS Model"""
- def train(
- self,
- batch_size: int = None,
- learning_rate: float = None,
- epochs_iters: int = None,
- ips: str = None,
- device: str = "gpu",
- resume_path: str = None,
- dy2st: bool = False,
- amp: str = "OFF",
- num_workers: int = None,
- use_vdl: bool = False,
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """train self
- Args:
- batch_size (int, optional): the train batch size value. Defaults to None.
- learning_rate (float, optional): the train learning rate value. Defaults to None.
- epochs_iters (int, optional): the train epochs value. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- resume_path (str, optional): the checkpoint file path to resume training. Train from scratch if it is set
- to None. Defaults to None.
- dy2st (bool, optional): Enable dynamic to static. Defaults to False.
- amp (str, optional): the amp settings. Defaults to 'OFF'.
- num_workers (int, optional): the workers number. Defaults to None.
- use_vdl (bool, optional): enable VisualDL. Defaults to False.
- save_dir (str, optional): the directory path to save train output. Defaults to None.
- Returns:
- CompletedProcess: the result of training subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- if batch_size is not None:
- cli_args.append(CLIArgument("--batch_size", batch_size))
- if learning_rate is not None:
- cli_args.append(CLIArgument("--learning_rate", learning_rate))
- if epochs_iters is not None:
- cli_args.append(CLIArgument("--epoch", epochs_iters))
- if resume_path:
- raise ValueError("`resume_path` is not supported.")
- # No need to handle `ips`
- benchmark = kwargs.pop("benchmark", None)
- if benchmark is not None:
- amp = benchmark.get("amp", None)
- if amp in ["O1", "O2"]:
- config.update_amp(amp)
- if use_vdl:
- raise ValueError(f"`use_vdl`={use_vdl} is not supported.")
- if device is not None:
- device_type, _ = parse_device(device)
- cli_args.append(CLIArgument("--device", device_type))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join("output", "train"))
- cli_args.append(CLIArgument("--save_dir", save_dir))
- # Benchmarking mode settings
- benchmark = kwargs.pop("benchmark", None)
- if benchmark is not None:
- envs = benchmark.get("env", None)
- num_workers = benchmark.get("num_workers", None)
- config.update_log_ranks(device)
- config.update_print_mem_info(benchmark.get("print_mem_info", True))
- if num_workers is not None:
- assert isinstance(num_workers, int), "num_workers must be an integer"
- cli_args.append(CLIArgument("--num_workers", num_workers))
- if envs is not None:
- for env_name, env_value in envs.items():
- os.environ[env_name] = str(env_value)
- else:
- if num_workers is not None:
- cli_args.append(CLIArgument("--num_workers", num_workers))
- # PDX related settings
- uniform_output_enabled = kwargs.pop("uniform_output_enabled", True)
- config.update({"uniform_output_enabled": uniform_output_enabled})
- config.update({"pdx_model_name": self.name})
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.train(config_path, cli_args, device, ips, save_dir)
- def evaluate(
- self,
- weight_path: str,
- batch_size: int = None,
- ips: str = None,
- device: str = "gpu",
- amp: str = "OFF",
- num_workers: int = None,
- **kwargs,
- ) -> CompletedProcess:
- """evaluate self using specified weight
- Args:
- weight_path (str): the path of model weight file to be evaluated.
- batch_size (int, optional): the batch size value in evaluating. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- amp (str, optional): the AMP setting. Defaults to 'OFF'.
- num_workers (int, optional): the workers number in evaluating. Defaults to None.
- Returns:
- CompletedProcess: the result of evaluating subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- cli_args.append(CLIArgument("--checkpoints", weight_path))
- if batch_size is not None:
- if batch_size != 1:
- raise ValueError("Batch size other than 1 is not supported.")
- # No need to handle `ips`
- if device is not None:
- device_type, _ = parse_device(device)
- cli_args.append(CLIArgument("--device", device_type))
- if amp is not None:
- if amp != "OFF":
- raise ValueError(f"`amp`={amp} is not supported.")
- if num_workers is not None:
- cli_args.append(CLIArgument("--num_workers", num_workers))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- cp = self.runner.evaluate(config_path, cli_args, device, ips)
- return cp
- def predict(
- self,
- weight_path: str,
- input_path: str,
- device: str = "gpu",
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """predict using specified weight
- Args:
- weight_path (str): the path of model weight file used to predict.
- input_path (str): the path of image file to be predicted.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save predict output. Defaults to None.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- cli_args.append(CLIArgument("--checkpoints", weight_path))
- input_path = abspath(input_path)
- cli_args.append(CLIArgument("--csv_path", input_path))
- if device is not None:
- device_type, _ = parse_device(device)
- cli_args.append(CLIArgument("--device", device_type))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join("output", "predict"))
- cli_args.append(CLIArgument("--save_dir", save_dir))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.predict(config_path, cli_args, device)
- def export(
- self, weight_path: str, save_dir: str = None, device: str = "gpu", **kwargs
- ):
- """export"""
- if not weight_path.startswith(("http://", "https://")):
- weight_path = abspath(weight_path)
- save_dir = abspath(save_dir)
- cli_args = []
- cli_args.append(CLIArgument("--checkpoints", weight_path))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- save_dir = abspath(os.path.join("output", "inference"))
- cli_args.append(CLIArgument("--save_dir", save_dir))
- if device is not None:
- device_type, _ = parse_device(device)
- cli_args.append(CLIArgument("--device", device_type))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- # Update YAML config file
- config = self.config.copy()
- config.update_pretrained_weights(weight_path)
- config.update({"pdx_model_name": self.name})
- config.dump(config_path)
- return self.runner.export(config_path, cli_args, device)
- def infer(
- self,
- model_dir: str,
- input_path: str,
- device: str = "gpu",
- save_dir: str = None,
- **kwargs,
- ):
- """infer"""
- raise_unsupported_api_error("infer", self.__class__)
- def compression(
- self,
- weight_path: str,
- batch_size=None,
- learning_rate=None,
- epochs_iters=None,
- device: str = "gpu",
- use_vdl=True,
- save_dir=None,
- **kwargs,
- ):
- """compression"""
- raise_unsupported_api_error("compression", self.__class__)
|