| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import platform
- from collections import defaultdict
- import numpy as np
- from .....utils.deps import function_requires_deps, is_dep_available
- from .....utils.file_interface import custom_open
- from .....utils.fonts import PINGFANG_FONT
- if is_dep_available("matplotlib"):
- import matplotlib.pyplot as plt
- from matplotlib import font_manager
- @function_requires_deps("matplotlib")
- def deep_analyse(dataset_path, output):
- """class analysis for dataset"""
- tags = ["train", "val"]
- labels_cnt = defaultdict(str)
- label_path = os.path.join(dataset_path, "label.txt")
- with custom_open(label_path, "r") as f:
- lines = f.readlines()
- for line in lines:
- line = line.strip().split()
- labels_cnt[line[0]] = " ".join(line[1:])
- for tag in tags:
- anno_path = os.path.join(dataset_path, f"{tag}.txt")
- classes_num = defaultdict(int)
- for i in range(len(labels_cnt)):
- classes_num[labels_cnt[str(i)]] = 0
- with custom_open(anno_path, "r") as f:
- lines = f.readlines()
- for line in lines:
- line = line.strip().split()
- classes_num[labels_cnt[line[1]]] += 1
- if tag == "train":
- cnts_train = [cat_ids for cat_name, cat_ids in classes_num.items()]
- elif tag == "val":
- cnts_val = [cat_ids for cat_name, cat_ids in classes_num.items()]
- classes = [cat_name for cat_name, cat_ids in classes_num.items()]
- sorted_id = sorted(
- range(len(cnts_train)), key=lambda k: cnts_train[k], reverse=True
- )
- cnts_train_sorted = [cnts_train[index] for index in sorted_id]
- cnts_val_sorted = [cnts_val[index] for index in sorted_id]
- classes_sorted = [classes[index] for index in sorted_id]
- x = np.arange(len(classes))
- width = 0.5
- # bar
- os_system = platform.system().lower()
- if os_system == "windows":
- plt.rcParams["font.sans-serif"] = "FangSong"
- else:
- font = font_manager.FontProperties(fname=PINGFANG_FONT.path, size=10)
- fig, ax = plt.subplots(figsize=(max(8, int(len(classes) / 5)), 5), dpi=300)
- ax.bar(x, cnts_train_sorted, width=0.5, label="train")
- ax.bar(x + width, cnts_val_sorted, width=0.5, label="val")
- plt.xticks(
- x + width / 2,
- classes_sorted,
- rotation=90,
- fontproperties=None if os_system == "windows" else font,
- )
- ax.set_xlabel(
- "类别名称", fontproperties=None if os_system == "windows" else font, fontsize=12
- )
- ax.set_ylabel(
- "图片数量", fontproperties=None if os_system == "windows" else font, fontsize=12
- )
- plt.legend(loc=1)
- fig.tight_layout()
- file_path = os.path.join(output, "histogram.png")
- fig.savefig(file_path, dpi=300)
- return {"histogram": os.path.join("check_dataset", "histogram.png")}
|