| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import platform
- from collections import defaultdict
- import numpy as np
- from .....utils.deps import function_requires_deps, is_dep_available
- from .....utils.fonts import PINGFANG_FONT
- if is_dep_available("matplotlib"):
- import matplotlib.pyplot as plt
- from matplotlib import font_manager
- if is_dep_available("pycocotools"):
- from pycocotools.coco import COCO
- @function_requires_deps("pycocotools", "matplotlib")
- def deep_analyse(dataset_dir, output):
- """class analysis for dataset"""
- tags = ["train", "val"]
- all_instances = 0
- for tag in tags:
- annotations_path = os.path.abspath(
- os.path.join(dataset_dir, f"annotations/instance_{tag}.json")
- )
- labels_cnt = defaultdict(list)
- coco = COCO(annotations_path)
- cat_ids = coco.getCatIds()
- for cat_id in cat_ids:
- cat_name = coco.loadCats(ids=cat_id)[0]["name"]
- labels_cnt[cat_name] = labels_cnt[cat_name] + coco.getAnnIds(catIds=cat_id)
- all_instances += len(labels_cnt[cat_name])
- if tag == "train":
- cnts_train = [len(cat_ids) for cat_name, cat_ids in labels_cnt.items()]
- elif tag == "val":
- cnts_val = [len(cat_ids) for cat_name, cat_ids in labels_cnt.items()]
- classes = [cat_name for cat_name, cat_ids in labels_cnt.items()]
- sorted_id = sorted(
- range(len(cnts_train)), key=lambda k: cnts_train[k], reverse=True
- )
- cnts_train_sorted = sorted(cnts_train, reverse=True)
- cnts_val_sorted = [cnts_val[index] for index in sorted_id]
- classes_sorted = [classes[index] for index in sorted_id]
- x = np.arange(len(classes))
- width = 0.5
- # bar
- os_system = platform.system().lower()
- if os_system == "windows":
- plt.rcParams["font.sans-serif"] = "FangSong"
- else:
- font = font_manager.FontProperties(fname=PINGFANG_FONT.path)
- fig, ax = plt.subplots(figsize=(max(8, int(len(classes) / 5)), 5), dpi=120)
- ax.bar(x, cnts_train_sorted, width=0.5, label="train")
- ax.bar(x + width, cnts_val_sorted, width=0.5, label="val")
- plt.xticks(
- x + width / 2,
- classes_sorted,
- rotation=90,
- fontproperties=None if os_system == "windows" else font,
- )
- ax.set_ylabel("Counts")
- plt.legend()
- fig.tight_layout()
- fig_path = os.path.join(output, "histogram.png")
- fig.savefig(fig_path)
- return {"histogram": os.path.join("check_dataset", "histogram.png")}
|