| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import platform
- import numpy as np
- import pandas as pd
- from .....utils.deps import function_requires_deps, is_dep_available
- from .....utils.fonts import PINGFANG_FONT
- if is_dep_available("matplotlib"):
- import matplotlib.pyplot as plt
- from matplotlib import font_manager
- @function_requires_deps("matplotlib")
- def deep_analyse(dataset_dir, output, label_col="label"):
- """class analysis for dataset"""
- tags = ["train", "val"]
- label_unique = None
- for tag in tags:
- csv_path = os.path.abspath(os.path.join(dataset_dir, tag + ".csv"))
- df = pd.read_csv(csv_path)
- if label_col not in df.columns:
- raise ValueError(f"default label_col: {label_col} not in {tag} dataset")
- if label_unique is None:
- label_unique = df[label_col].unique()
- cls_dict = {}
- for label in label_unique:
- vis_df = df[df[label_col].isin([label])]
- cls_dict[label] = len(vis_df)
- if tag == "train":
- cls_train = [label_num for label_col, label_num in cls_dict.items()]
- elif tag == "val":
- cls_val = [label_num for label_col, label_num in cls_dict.items()]
- sorted_id = sorted(range(len(cls_train)), key=lambda k: cls_train[k], reverse=True)
- cls_train_sorted = sorted(cls_train, reverse=True)
- cls_val_sorted = [cls_val[index] for index in sorted_id]
- classes_sorted = [label_unique[index] for index in sorted_id]
- x = np.arange(len(label_unique))
- width = 0.5
- # bar
- os_system = platform.system().lower()
- if os_system == "windows":
- plt.rcParams["font.sans-serif"] = "FangSong"
- else:
- font = font_manager.FontProperties(fname=PINGFANG_FONT.path)
- fig, ax = plt.subplots(figsize=(max(8, int(len(label_unique) / 5)), 5), dpi=120)
- ax.bar(x, cls_train_sorted, width=0.5, label="train")
- ax.bar(x + width, cls_val_sorted, width=0.5, label="val")
- plt.xticks(
- x + width / 2,
- classes_sorted,
- rotation=90,
- fontproperties=None if os_system == "windows" else font,
- )
- ax.set_ylabel("Counts")
- plt.legend()
- fig.tight_layout()
- fig_path = os.path.join(output, "histogram.png")
- fig.savefig(fig_path)
- return {"histogram": os.path.join("check_dataset", "histogram.png")}
|