app.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. from flask import Flask, request, render_template, send_from_directory, jsonify, session, send_file
  2. from werkzeug.utils import secure_filename
  3. from flask_cors import CORS
  4. import argparse
  5. from os import path as osp
  6. import os
  7. import time
  8. import json
  9. import sys
  10. import multiprocessing as mp
  11. from . import workspace_pb2 as w
  12. from .utils import CustomEncoder, ShareData, is_pic, get_logger, TaskStatus
  13. import numpy as np
  14. app = Flask(__name__)
  15. CORS(app, supports_credentials=True)
  16. SESSION_TYPE = 'filesystem'
  17. app.config.from_object(__name__)
  18. SD = ShareData()
  19. def init(dirname, logger):
  20. #初始化工作空间
  21. from .workspace import init_workspace
  22. from .system import get_system_info
  23. SD.workspace = w.Workspace(path=dirname)
  24. init_workspace(SD.workspace, dirname, logger)
  25. SD.workspace_dir = dirname
  26. get_system_info(SD.machine_info)
  27. '''@app.errorhandler(Exception)
  28. def handle_exception(e):
  29. ret = {"status": -1, 'message': repr(e)}
  30. return ret
  31. '''
  32. @app.route('/workspace', methods=['GET', 'PUT'])
  33. def workspace():
  34. """
  35. methods=='GET':获取工作目录中项目、数据集、任务的属性
  36. Args:
  37. struct(str):结构类型,可以是'dataset', 'project'或'task',
  38. id(str):结构类型对应的id
  39. attr_list(list):需要获取的属性的列表
  40. Return:
  41. attr(dict):key为属性,value为属性的值,
  42. status
  43. methods=='PUT':修改工作目录中项目、数据集、任务的属性
  44. Args:
  45. struct(str):结构类型,可以是'dataset', 'project'或'task',
  46. id(str):结构类型对应的id
  47. attr_dict(dict):key:需要修改的属性,value:需要修改属性的值
  48. Return:
  49. status
  50. """
  51. data = request.get_json()
  52. if data is None:
  53. data = request.args
  54. if request.method == 'GET':
  55. if data:
  56. from .workspace import get_attr
  57. ret = get_attr(data, SD.workspace)
  58. return ret
  59. return {'status': 1, 'dirname': SD.workspace_dir}
  60. if request.method == 'PUT':
  61. from .workspace import set_attr
  62. ret = set_attr(data, SD.workspace)
  63. return ret
  64. @app.route('/dataset', methods=['GET', 'POST', 'PUT', 'DELETE'])
  65. def dataset():
  66. """
  67. methods=='GET':获取所有数据集或者单个数据集的信息
  68. Args:
  69. did(str, optional):数据集id(可选),如果存在就返回数据集id对应数据集的信息
  70. Ruturn:
  71. status
  72. if 'did' in Args:
  73. id(str):数据集id,
  74. dataset_status(int):数据集状态(DatasetStatus)枚举变量的值
  75. message(str):数据集状态信息
  76. attr(dict):数据集属性
  77. else:
  78. datasets(list):所有数据集属性的列表
  79. methods=='POST':创建一个新的数据集
  80. Args:
  81. name(str):数据集名字
  82. desc(str):数据集描述
  83. dataset_type(str):数据集类型,可以是['classification', 'detection', 'segmentation','instance_segmentation','remote_segmentation']
  84. Return:
  85. did(str):数据集id
  86. status
  87. methods=='PUT':异步,向数据集导入数据,支持分类、检测、语义分割、实例分割、摇杆分割数据集类型
  88. Args:
  89. did(str):数据集id
  90. path(str):数据集路径
  91. Return:
  92. status
  93. methods=='DELETE':删除已有的某个数据集
  94. Args:
  95. did(str):数据集id
  96. Return:
  97. status
  98. """
  99. data = request.get_json()
  100. if data is None:
  101. data = request.args
  102. if request.method == 'GET':
  103. if 'did' in data:
  104. from .dataset.dataset import get_dataset_status
  105. ret = get_dataset_status(data, SD.workspace)
  106. return ret
  107. from .dataset.dataset import list_datasets
  108. ret = list_datasets(SD.workspace)
  109. return ret
  110. if request.method == 'POST':
  111. from .dataset.dataset import create_dataset
  112. ret = create_dataset(data, SD.workspace)
  113. return ret
  114. if request.method == 'PUT':
  115. from .dataset.dataset import import_dataset
  116. ret = import_dataset(data, SD.workspace, SD.monitored_processes,
  117. SD.load_demo_proc_dict)
  118. return ret
  119. if request.method == 'DELETE':
  120. from .dataset.dataset import delete_dataset
  121. ret = delete_dataset(data, SD.workspace)
  122. return ret
  123. @app.route('/dataset/details', methods=['GET'])
  124. def dataset_details():
  125. """
  126. methods=='GET':获取某个数据集的详细信息
  127. Args:
  128. did(str):数据集id
  129. Return:
  130. details(dict):数据集详细信息,
  131. status
  132. """
  133. data = request.get_json()
  134. if data is None:
  135. data = request.args
  136. if request.method == 'GET':
  137. from .dataset.dataset import get_dataset_details
  138. ret = get_dataset_details(data, SD.workspace)
  139. return ret
  140. @app.route('/dataset/split', methods=['PUT'])
  141. def dataset_split():
  142. """
  143. Args:
  144. did(str):数据集id
  145. val_split(float): 验证集比例
  146. test_split(float): 测试集比例
  147. Return:
  148. status
  149. """
  150. data = request.get_json()
  151. if request.method == 'PUT':
  152. from .dataset.dataset import split_dataset
  153. ret = split_dataset(data, SD.workspace)
  154. return ret
  155. @app.route('/dataset/image', methods=['GET'])
  156. def dataset_img_base64():
  157. """
  158. Args:
  159. GET: 获取图片base64数据,参数:'path' 图片绝对路径
  160. """
  161. data = request.get_json()
  162. if request.method == 'GET':
  163. from .dataset.dataset import img_base64
  164. ret = img_base64(data)
  165. return ret
  166. @app.route('/dataset/file', methods=['GET'])
  167. def get_image_file():
  168. """
  169. Args:
  170. GET: 获取文件数据,参数:'path' 文件绝对路径
  171. """
  172. data = request.get_json()
  173. if request.method == 'GET':
  174. ret = data['path']
  175. return send_file(ret)
  176. @app.route('/dataset/npy', methods=['GET'])
  177. def get_npyfile():
  178. """
  179. Args:
  180. GET: 获取文件数据,参数:'path' npy文件绝对路径
  181. """
  182. data = request.get_json()
  183. if request.method == 'GET':
  184. npy = np.load(data['path'], allow_pickle=True).tolist()
  185. npy['gt_bbox'] = npy['gt_bbox'].tolist()
  186. return npy
  187. @app.route('/file', methods=['GET'])
  188. def get_file():
  189. """
  190. Args:
  191. path'(str):文件在服务端的路径
  192. Return:
  193. #数据为图片
  194. img_data(str): base64图片数据
  195. status
  196. #数据为xml文件
  197. ret:数据流
  198. #数据为log文件
  199. ret:json数据
  200. """
  201. data = request.get_json()
  202. if data is None:
  203. data = request.args
  204. if request.method == 'GET':
  205. path = data['path']
  206. if not os.path.exists(path):
  207. return {'status': -1}
  208. if is_pic(path):
  209. from .dataset.dataset import img_base64
  210. ret = img_base64(data, SD.workspace)
  211. return ret
  212. file_type = path[(path.rfind('.') + 1):]
  213. if file_type in ['xml', 'npy', 'log']:
  214. return send_file(path)
  215. else:
  216. pass
  217. @app.route('/project', methods=['GET', 'POST', 'DELETE'])
  218. def project():
  219. """
  220. methods=='GET':获取指定项目id的信息
  221. Args:
  222. 'id'(str, optional):项目id,可选,如果存在就返回项目id对应项目的信息
  223. Return:
  224. status,
  225. if 'id' in Args:
  226. attr(dict):项目属性
  227. else:
  228. projects(list):所有项目属性
  229. methods=='POST':创建一个项目
  230. Args:
  231. name(str): 项目名
  232. desc(str):项目描述
  233. project_type(str):项目类型
  234. Return:
  235. pid(str):项目id
  236. status
  237. methods=='DELETE':删除一个项目,以及项目相关的task
  238. Args:
  239. pid(str):项目id
  240. Return:
  241. status
  242. """
  243. data = request.get_json()
  244. if data is None:
  245. data = request.args
  246. if request.method == 'GET':
  247. from .project.project import list_projects
  248. from .project.project import get_project
  249. if 'id' in data:
  250. ret = get_project(data, SD.workspace)
  251. return ret
  252. ret = list_projects(SD.workspace)
  253. return ret
  254. if request.method == 'POST':
  255. from .project.project import create_project
  256. ret = create_project(data, SD.workspace)
  257. return ret
  258. if request.method == 'DELETE':
  259. from .project.project import delete_project
  260. ret = delete_project(data, SD.workspace)
  261. return ret
  262. @app.route('/project/task', methods=['GET', 'POST', 'DELETE'])
  263. def task():
  264. """
  265. methods=='GET':#获取某个任务的信息或者所有任务的信息
  266. Args:
  267. tid(str, optional):任务id,可选,若存在即返回id对应任务的信息
  268. resume(str, optional):获取是否可以恢复训练的状态,可选,需在存在tid的情况下才生效
  269. pid(str, optional):项目id,可选,若存在即返回该项目id下所有任务信息
  270. Return:
  271. status
  272. if 'tid' in Args:
  273. task_status(int):任务状态(TaskStatus)枚举变量的值
  274. message(str):任务状态信息
  275. type:任务类型包括{'classification', 'detection', 'segmentation', 'instance_segmentation'}
  276. resumable(bool):仅Args中存在resume时返回,任务训练是否可以恢复
  277. max_saved_epochs(int):仅Args中存在resume时返回,当前训练模型保存的最大epoch
  278. else:
  279. tasks(list):所有任务属性
  280. methods=='POST':#创建任务(训练或者裁剪)
  281. Args:
  282. pid(str):项目id
  283. train(dict):训练参数
  284. desc(str, optional):任务描述,可选
  285. parent_id(str, optional):可选,若存在即表示新建的任务为裁剪任务,parent_id的值为裁剪任务对应的训练任务id
  286. Return:
  287. tid(str):任务id
  288. status
  289. methods=='DELETE':#删除任务
  290. Args:
  291. tid(str):任务id
  292. Return:
  293. status
  294. """
  295. data = request.get_json()
  296. if data is None:
  297. data = request.args
  298. if request.method == 'GET':
  299. if data:
  300. if 'pid' not in data:
  301. from .project.task import get_task_status
  302. ret = get_task_status(data, SD.workspace)
  303. return ret
  304. from .project.task import list_tasks
  305. ret = list_tasks(data, SD.workspace)
  306. return ret
  307. if request.method == 'POST':
  308. from .project.task import create_task
  309. ret = create_task(data, SD.workspace)
  310. return ret
  311. if request.method == 'DELETE':
  312. from .project.task import delete_task
  313. ret = delete_task(data, SD.workspace)
  314. return ret
  315. @app.route('/project/task/params', methods=['GET', 'POST'])
  316. def task_params():
  317. """
  318. methods=='GET':#获取任务id对应的参数,或者获取项目默认参数
  319. Args:
  320. tid(str, optional):获取任务对应的参数
  321. pid(str,optional):获取项目对应的默认参数
  322. model_type(str,optional):pid存在下有效,对应项目下获取指定模型的默认参数
  323. gpu_list(list,optional):pid存在下有效,默认值为[0],使用指定的gpu并获取相应的默认参数
  324. Return:
  325. train(dict):训练或者裁剪的参数
  326. status
  327. methods=='POST':#设置任务参数,将前端用户设置训练参数dict保存在后端的pkl文件中
  328. Args:
  329. tid(str):任务id
  330. train(dict):训练参数
  331. Return:
  332. status
  333. """
  334. data = request.get_json()
  335. if data is None:
  336. data = request.args
  337. if request.method == 'GET':
  338. if 'tid' in data:
  339. from .project.task import get_task_params
  340. ret = get_task_params(data, SD.workspace)
  341. ret['train'] = CustomEncoder().encode(ret['train'])
  342. ret['train'] = json.loads(ret['train'])
  343. return ret
  344. if 'pid' in data:
  345. from .project.task import get_default_params
  346. ret = get_default_params(data, SD.workspace, SD.machine_info)
  347. return ret
  348. if request.method == 'POST':
  349. from .project.task import set_task_params
  350. ret = set_task_params(data, SD.workspace)
  351. return ret
  352. @app.route('/project/task/metrics', methods=['GET'])
  353. def task_metrics():
  354. """
  355. methods=='GET':#获取日志数据
  356. Args:
  357. tid(str):任务id
  358. type(str):可以获取日志的类型,[train,eval,sensitivities,prune],包括训练,评估,敏感度与模型裁剪率关系图,裁剪的日志
  359. Return:
  360. status
  361. if type == 'train':
  362. train_log(dict): 训练日志
  363. elif type == 'eval':
  364. eval_metrics(dict): 评估结果
  365. elif type == 'sensitivities':
  366. sensitivities_loss_img(dict): 敏感度与模型裁剪率关系图
  367. elif type == 'prune':
  368. prune_log(dict):裁剪日志
  369. """
  370. data = request.get_json()
  371. if data is None:
  372. data = request.args
  373. if request.method == 'GET':
  374. if data['type'] == 'train':
  375. from .project.task import get_train_metrics
  376. ret = get_train_metrics(data, SD.workspace)
  377. return ret
  378. if data['type'] == 'eval':
  379. from .project.task import get_eval_metrics
  380. ret = get_eval_metrics(data, SD.workspace)
  381. return ret
  382. if data['type'] == 'eval_all':
  383. from .project.task import get_eval_all_metrics
  384. ret = get_eval_all_metrics(data, SD.workspace)
  385. return ret
  386. if data['type'] == 'sensitivities':
  387. from .project.task import get_sensitivities_loss_img
  388. ret = get_sensitivities_loss_img(data, SD.workspace)
  389. return ret
  390. if data['type'] == 'prune':
  391. from .project.task import get_prune_metrics
  392. ret = get_prune_metrics(data, SD.workspace)
  393. return ret
  394. @app.route('/project/task/train', methods=['POST', 'PUT'])
  395. def task_train():
  396. """
  397. methods=='POST':#异步,启动训练或者裁剪任务
  398. Args:
  399. tid(str):任务id
  400. eval_metric_loss(int,optional):可选,裁剪任务时可用,裁剪任务所需的评估loss
  401. Return:
  402. status
  403. methods=='PUT':#改变任务训练的状态,即终止训练或者恢复训练
  404. Args:
  405. tid(str):任务id
  406. act(str):[stop,resume]暂停或者恢复
  407. epoch(int):(resume下可以设置)恢复训练的起始轮数
  408. Return:
  409. status
  410. """
  411. data = request.get_json()
  412. if request.method == 'POST':
  413. from .project.task import start_train_task
  414. ret = start_train_task(data, SD.workspace, SD.monitored_processes)
  415. return ret
  416. if request.method == 'PUT':
  417. if data['act'] == 'resume':
  418. from .project.task import resume_train_task
  419. ret = resume_train_task(data, SD.workspace, SD.monitored_processes)
  420. return ret
  421. if data['act'] == 'stop':
  422. from .project.task import stop_train_task
  423. ret = stop_train_task(data, SD.workspace)
  424. return ret
  425. @app.route('/project/task/train/file', methods=['GET'])
  426. def log_file():
  427. data = request.get_json()
  428. if request.method == 'GET':
  429. path = data['path']
  430. if not os.path.exists(path):
  431. return {'status': -1}
  432. logs = open(path, encoding='utf-8').readlines()
  433. if len(logs) < 50:
  434. return {'status': 1, 'log': logs}
  435. else:
  436. logs = logs[-50:]
  437. return {'status': 1, 'log': logs}
  438. @app.route('/project/task/prune', methods=['GET', 'POST', 'PUT'])
  439. def task_prune():
  440. """
  441. methods=='GET':#获取裁剪任务的状态
  442. Args:
  443. tid(str):任务id
  444. Return:
  445. prune_status(int): 裁剪任务状态(PruneStatus)枚举变量的值
  446. status
  447. methods=='POST':#异步,创建一个裁剪分析,对于启动裁剪任务前需要先启动裁剪分析
  448. Args:
  449. tid(str):任务id
  450. Return:
  451. status
  452. methods=='PUT':#改变裁剪分析任务的状态
  453. Args:
  454. tid(str):任务id
  455. act(str):[stop],目前仅支持停止一个裁剪分析任务
  456. Return
  457. status
  458. """
  459. data = request.get_json()
  460. if data is None:
  461. data = request.args
  462. if request.method == 'GET':
  463. from .project.task import get_prune_status
  464. ret = get_prune_status(data, SD.workspace)
  465. return ret
  466. if request.method == 'POST':
  467. from .project.task import start_prune_analysis
  468. ret = start_prune_analysis(data, SD.workspace, SD.monitored_processes)
  469. return ret
  470. if request.method == 'PUT':
  471. if data['act'] == 'stop':
  472. from .project.task import stop_prune_analysis
  473. ret = stop_prune_analysis(data, SD.workspace)
  474. return ret
  475. @app.route('/project/task/evaluate', methods=['GET', 'POST'])
  476. def task_evaluate():
  477. '''
  478. methods=='GET':#获取模型评估的结果
  479. Args:
  480. tid(str):任务id
  481. Return:
  482. evaluate_status(int): 任务状态(TaskStatus)枚举变量的值
  483. message(str):描述评估任务的信息
  484. result(dict):如果评估成功,返回评估结果的dict,否则为None
  485. status
  486. methods=='POST':#异步,创建一个评估任务
  487. Args:
  488. tid(str):任务id
  489. epoch(int,optional):需要评估的epoch,如果为None则会评估训练时指标最好的epoch
  490. topk(int,optional):分类任务topk指标,如果为None默认输入为5
  491. score_thresh(float):检测任务类别的score threshhold值,如果为None默认输入为0.5
  492. overlap_thresh(float):实例分割任务IOU threshhold值,如果为None默认输入为0.3
  493. Return:
  494. status
  495. '''
  496. data = request.get_json()
  497. if data is None:
  498. data = request.args
  499. if request.method == 'GET':
  500. from .project.task import get_evaluate_result
  501. ret = get_evaluate_result(data, SD.workspace)
  502. if ret['evaluate_status'] == TaskStatus.XEVALUATED and ret[
  503. 'result'] is not None:
  504. if 'Confusion_Matrix' in ret['result']:
  505. ret['result']['Confusion_Matrix'] = ret['result'][
  506. 'Confusion_Matrix'].tolist()
  507. ret['result'] = CustomEncoder().encode(ret['result'])
  508. ret['evaluate_status'] = ret['evaluate_status'].value
  509. return ret
  510. if request.method == 'POST':
  511. from .project.task import evaluate_model
  512. ret = evaluate_model(data, SD.workspace, SD.monitored_processes)
  513. return ret
  514. @app.route('/project/task/evaluate/file', methods=['GET'])
  515. def task_evaluate_file():
  516. data = request.get_json()
  517. if request.method == 'GET':
  518. ret = data['path']
  519. return send_file(ret)
  520. @app.route('/project/task/predict', methods=['GET', 'POST', 'PUT'])
  521. def task_predict():
  522. '''
  523. methods=='GET':#获取预测状态
  524. Args:
  525. tid(str):任务id
  526. Return:
  527. predict_status(int): 预测任务状态(PredictStatus)枚举变量的值
  528. message(str): 预测信息
  529. status
  530. methods=='POST':#创建预测任务,目前仅支持单张图片的预测
  531. Args:
  532. tid(str):任务id
  533. image_data(str):base64编码的image数据
  534. score_thresh(float,optional):可选,检测任务时有效,检测类别的score threashold值默认是0.5
  535. epoch(int,float,optional):可选,选择需要做预测的ephoch,默认为评估指标最好的那一个epoch
  536. Return:
  537. path(str):服务器上保存预测结果图片的路径
  538. status
  539. '''
  540. data = request.get_json()
  541. if data is None:
  542. data = request.args
  543. if request.method == 'GET':
  544. from .project.task import get_predict_status
  545. ret = get_predict_status(data, SD.workspace)
  546. return ret
  547. if request.method == 'POST':
  548. from .project.task import predict_test_pics
  549. ret = predict_test_pics(data, SD.workspace, SD.monitored_processes)
  550. if 'img_list' in data:
  551. del ret['path']
  552. return ret
  553. return ret
  554. if request.method == 'PUT':
  555. from .project.task import stop_predict_task
  556. ret = stop_predict_task(data, SD.workspace)
  557. return ret
  558. @app.route('/project/task/export', methods=['GET', 'POST', 'PUT'])
  559. def task_export():
  560. '''
  561. methods=='GET':#获取导出模型的状态
  562. Args:
  563. tid(str):任务id
  564. quant(str,optional)可选,[log,result],导出量模型导出状态,若值为log则返回量化的日志;若值为result则返回量化的结果
  565. Return:
  566. status
  567. if quant == 'log':
  568. quant_log(dict):量化日志
  569. if quant == 'result'
  570. quant_result(dict):量化结果
  571. if quant not in Args:
  572. export_status(int):模型导出状态(PredictStatus)枚举变量的值
  573. message(str):模型导出提示信息
  574. methods=='POST':#导出inference模型或者导出lite模型
  575. Args:
  576. tid(str):任务id
  577. type(str):保存模型的类别[infer,lite],支持inference模型导出和lite的模型导出
  578. save_dir(str):保存模型的路径
  579. epoch(str,optional)可选,指定导出的epoch数默认为评估效果最好的epoch
  580. quant(bool,optional)可选,type为infer有效,是否导出量化后的模型,默认为False
  581. model_path(str,optional)可选,type为lite时有效,inference模型的地址
  582. Return:
  583. status
  584. if type == 'infer':
  585. save_dir:模型保存路径
  586. if type == 'lite':
  587. message:模型保存信息
  588. methods=='PUT':#停止导出模型
  589. Args:
  590. tid(str):任务id
  591. Return:
  592. export_status(int):模型导出状态(PredictStatus)枚举变量的值
  593. message(str):停止模型导出提示信息
  594. status
  595. '''
  596. data = request.get_json()
  597. if data is None:
  598. data = request.args
  599. if request.method == 'GET':
  600. if 'quant' in data:
  601. if data['quant'] == 'log':
  602. from .project.task import get_quant_progress
  603. ret = get_quant_progress(data, SD.workspace)
  604. return ret
  605. if data['quant'] == 'result':
  606. from .project.task import get_quant_result
  607. ret = get_quant_result(data, SD.workspace)
  608. return ret
  609. from .project.task import get_export_status
  610. ret = get_export_status(data, SD.workspace)
  611. ret['export_status'] = ret['export_status'].value
  612. return ret
  613. if request.method == 'POST':
  614. if data['type'] == 'infer':
  615. from .project.task import export_infer_model
  616. ret = export_infer_model(data, SD.workspace,
  617. SD.monitored_processes)
  618. return ret
  619. if data['type'] == 'lite':
  620. from .project.task import export_lite_model
  621. ret = export_lite_model(data, SD.workspace)
  622. return ret
  623. if request.method == 'PUT':
  624. from .project.task import stop_export_task
  625. stop_export_task(data, SD.workspace)
  626. return ret
  627. @app.route('/project/task/vdl', methods=['GET'])
  628. def task_vdl():
  629. '''
  630. methods=='GET':#打开某个任务的可视化分析工具(VisualDL)
  631. Args:
  632. tid(str):任务id
  633. Return:
  634. url(str):vdl地址
  635. status
  636. '''
  637. data = request.get_json()
  638. if data is None:
  639. data = request.args
  640. if request.method == 'GET':
  641. from .project.task import open_vdl
  642. ret = open_vdl(data, SD.workspace, SD.current_port,
  643. SD.monitored_processes, SD.running_boards)
  644. return ret
  645. @app.route('/system', methods=['GET', 'DELETE'])
  646. def system():
  647. '''
  648. methods=='GET':#获取系统GPU、CPU信息
  649. Args:
  650. type(str):[machine_info,gpu_memory_size]选择需要获取的系统信息
  651. Return:
  652. status
  653. if type=='machine_info'
  654. info(dict):服务端信息
  655. if type=='gpu_memory_size'
  656. gpu_mem_infos(list):GPU内存信息
  657. '''
  658. data = request.get_json()
  659. if data is None:
  660. data = request.args
  661. if request.method == 'GET':
  662. if data['type'] == 'machine_info':
  663. '''if 'path' not in data:
  664. data['path'] = None
  665. from .system import get_machine_info
  666. ret = get_machine_info(data, SD.machine_info)'''
  667. from .system import get_system_info
  668. ret = get_system_info(SD.machine_info)
  669. return ret
  670. if data['type'] == 'gpu_memory_size':
  671. #from .system import get_gpu_memory_size
  672. from .system import get_gpu_memory_info
  673. ret = get_gpu_memory_info(SD.machine_info)
  674. return ret
  675. if request.method == 'DELETE':
  676. from .system import exit_system
  677. ret = exit_system(SD.monitored_processes)
  678. return ret
  679. @app.route('/demo', methods=['GET', 'POST', 'PUT'])
  680. def demo():
  681. '''
  682. methods=='GET':#获取demo下载进度
  683. Args:
  684. prj_type(int):项目类型ProjectType枚举变量的int值
  685. Return:
  686. status
  687. attr(dict):demo下载信息
  688. methods=='POST':#下载或创建demo工程
  689. Args:
  690. type(str):{download,load}下载或者创建样例
  691. prj_type(int):项目类型ProjectType枚举变量的int值
  692. Return:
  693. status
  694. if type=='load':
  695. did:数据集id
  696. pid:项目id
  697. methods=='PUT':#停止下载或创建demo工程
  698. Args:
  699. prj_type(int):项目类型ProjectType枚举变量的int值
  700. Return:
  701. status
  702. '''
  703. data = request.get_json()
  704. if data is None:
  705. data = request.args
  706. if request.method == 'GET':
  707. from .demo import get_download_demo_progress
  708. ret = get_download_demo_progress(data, SD.workspace)
  709. return ret
  710. if request.method == 'POST':
  711. if data['type'] == 'download':
  712. from .demo import download_demo_dataset
  713. ret = download_demo_dataset(data, SD.workspace,
  714. SD.load_demo_proc_dict)
  715. return ret
  716. if data['type'] == 'load':
  717. from .demo import load_demo_project
  718. ret = load_demo_project(data, SD.workspace, SD.monitored_processes,
  719. SD.load_demo_proj_data_dict,
  720. SD.load_demo_proc_dict)
  721. return ret
  722. if request.method == 'PUT':
  723. from .demo import stop_import_demo
  724. ret = stop_import_demo(data, SD.workspace, SD.load_demo_proc_dict,
  725. SD.load_demo_proj_data_dict)
  726. return ret
  727. @app.route('/model', methods=['GET', 'POST', 'DELETE'])
  728. def model():
  729. '''
  730. methods=='GET':#获取一个或者所有模型的信息
  731. Args:
  732. mid(str,optional)可选,若存在则返回某个模型的信息
  733. type(str,optional)可选,[pretrained,exported].若存在则返回对应类型下所有的模型信息
  734. Return:
  735. status
  736. if mid in Args:
  737. dataset_attr(dict):数据集属性
  738. task_params(dict):模型训练参数
  739. eval_result(dict):模型评估结果
  740. if type in Args and type == 'pretrained':
  741. pretrained_models(list):所有预训练模型信息
  742. if type in Args and type == 'exported':
  743. exported_models(list):所有inference模型的信息
  744. methods=='POST':#创建一个模型
  745. Args:
  746. pid(str):项目id
  747. tid(str):任务id
  748. name(str):模型名字
  749. type(str):创建模型的类型,[pretrained,exported],pretrained代表创建预训练模型、exported代表创建inference或者lite模型
  750. source_path(str):仅type为pretrained时有效,训练好的模型的路径
  751. path(str):仅type为exported时有效,inference或者lite模型的路径
  752. exported_type(int):0为inference模型,1为lite模型
  753. eval_results(dict,optional):可选,仅type为pretrained时有效,模型评估的指标
  754. Return:
  755. status
  756. if type == 'pretrained':
  757. pmid(str):预训练模型id
  758. if type == 'exported':
  759. emid(str):inference模型id
  760. methods=='DELETE':删除一个模型
  761. Args:
  762. type(str):删除模型的类型,[pretrained,exported],pretrained代表创建预训练模型、exported代表创建inference或者lite模型
  763. if type='pretrained':
  764. pmid:预训练模型id
  765. if type='exported':
  766. emid:inference或者lite模型id
  767. Return:
  768. status
  769. '''
  770. data = request.get_json()
  771. if data is None:
  772. data = request.args
  773. if request.method == 'GET':
  774. if 'type' in data:
  775. if data['type'] == 'pretrained':
  776. from .model import list_pretrained_models
  777. ret = list_pretrained_models(SD.workspace)
  778. return ret
  779. if data['type'] == 'exported':
  780. from .model import list_exported_models
  781. ret = list_exported_models(SD.workspace)
  782. return ret
  783. from .model import get_model_details
  784. ret = get_model_details(data, SD.workspace)
  785. ret['eval_result']['Confusion_Matrix'] = ret['eval_result'][
  786. 'Confusion_Matrix'].tolist()
  787. ret['eval_result'] = CustomEncoder().encode(ret['eval_result'])
  788. ret['task_params'] = CustomEncoder().encode(ret['task_params'])
  789. return ret
  790. if request.method == 'POST':
  791. if data['type'] == 'pretrained':
  792. if 'eval_results' in data:
  793. data['eval_results']['Confusion_Matrix'] = np.array(data[
  794. 'eval_results']['Confusion_Matrix'])
  795. from .model import create_pretrained_model
  796. ret = create_pretrained_model(data, SD.workspace,
  797. SD.monitored_processes)
  798. return ret
  799. if data['type'] == 'exported':
  800. from .model import create_exported_model
  801. ret = create_exported_model(data, SD.workspace)
  802. return ret
  803. if request.method == 'DELETE':
  804. if data['type'] == 'pretrained':
  805. from .model import delete_pretrained_model
  806. ret = delete_pretrained_model(data, SD.workspace)
  807. return ret
  808. if data['type'] == 'exported':
  809. from .model import delete_exported_model
  810. ret = delete_exported_model(data, SD.workspace)
  811. return ret
  812. @app.route('/model/file', methods=['GET'])
  813. def model_file():
  814. data = request.get_json()
  815. if request.method == 'GET':
  816. ret = data['path']
  817. return send_file(ret)
  818. def run(port, workspace_dir):
  819. if workspace_dir is None:
  820. user_home = os.path.expanduser('~')
  821. dirname = osp.join(user_home, "paddlex_workspace")
  822. else:
  823. dirname = workspace_dir
  824. if not osp.exists(dirname):
  825. os.makedirs(dirname)
  826. else:
  827. if not osp.isdir(dirname):
  828. os.remove(dirname)
  829. os.makedirs(dirname)
  830. logger = get_logger(osp.join(dirname, "mcessages.log"))
  831. init(dirname, logger)
  832. app.run(host='0.0.0.0', port=port, threaded=True, debug=True)