| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- import random
- from .utils import list_files, is_pic
- import paddlex.utils.logging as logging
- def split_imagenet_dataset(dataset_dir, val_percent, test_percent, save_dir):
- all_files = list_files(dataset_dir)
- label_list = list()
- train_image_anno_list = list()
- val_image_anno_list = list()
- test_image_anno_list = list()
- for file in all_files:
- if not is_pic(file):
- continue
- label, image_name = osp.split(file)
- if label not in label_list:
- label_list.append(label)
- label_list = sorted(label_list)
- for i in range(len(label_list)):
- image_list = list_files(osp.join(dataset_dir, label_list[i]))
- image_anno_list = list()
- for img in image_list:
- image_anno_list.append([osp.join(label_list[i], img), i])
- random.shuffle(image_anno_list)
- image_num = len(image_anno_list)
- val_num = int(image_num * val_percent)
- test_num = int(image_num * test_percent)
- train_num = image_num - val_num - test_num
- train_image_anno_list += image_anno_list[:train_num]
- val_image_anno_list += image_anno_list[train_num:train_num + val_num]
- test_image_anno_list += image_anno_list[train_num + val_num:]
- with open(
- osp.join(save_dir, 'train_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in train_image_anno_list:
- file, label = x
- f.write('{} {}\n'.format(file, label))
- with open(
- osp.join(save_dir, 'val_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in val_image_anno_list:
- file, label = x
- f.write('{} {}\n'.format(file, label))
- if len(test_image_anno_list):
- with open(
- osp.join(save_dir, 'test_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in test_image_anno_list:
- file, label = x
- f.write('{} {}\n'.format(file, label))
- with open(
- osp.join(save_dir, 'labels.txt'), mode='w', encoding='utf-8') as f:
- for l in sorted(label_list):
- f.write('{}\n'.format(l))
- return len(train_image_anno_list), len(val_image_anno_list), len(
- test_image_anno_list)
|