| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from urllib.parse import urlparse
- import yaml
- from paddleseg.utils import NoAliasDumper
- from paddleseg.cvlibs.config import parse_from_yaml, merge_config_dicts
- from ..base import BaseConfig
- from ...utils.misc import abspath
- class BaseSegConfig(BaseConfig):
- """ BaseSegConfig """
- def update(self, dict_like_obj):
- """ update """
- dict_ = merge_config_dicts(dict_like_obj, self.dict)
- self.reset_from_dict(dict_)
- def load(self, config_path):
- """ load """
- dict_ = parse_from_yaml(config_path)
- if not isinstance(dict_, dict):
- raise TypeError
- self.reset_from_dict(dict_)
- def dump(self, config_path):
- """ dump """
- with open(config_path, 'w', encoding='utf-8') as f:
- yaml.dump(self.dict, f, Dumper=NoAliasDumper)
- def update_learning_rate(self, learning_rate):
- """ update_learning_rate """
- if 'lr_scheduler' not in self:
- raise RuntimeError(
- "Not able to update learning rate, because no LR scheduler config was found."
- )
- self.lr_scheduler['learning_rate'] = learning_rate
- def update_batch_size(self, batch_size, mode='train'):
- """ update_batch_size """
- if mode == 'train':
- self.set_val('batch_size', batch_size)
- else:
- raise ValueError(
- f"Setting `batch_size` in {repr(mode)} mode is not supported.")
- def update_log_ranks(self, device):
- """update log ranks
- Args:
- device (str): the running device to set
- """
- log_ranks = device.split(':')[1]
- self.set_val('log_ranks', log_ranks)
- def update_print_mem_info(self, print_mem_info: bool):
- """setting print memory info"""
- assert isinstance(print_mem_info,
- bool), "print_mem_info should be a bool"
- self.set_val('print_mem_info', print_mem_info)
- def update_shuffle(self, shuffle: bool):
- """setting print memory info"""
- assert isinstance(shuffle, bool), "shuffle should be a bool"
- self.set_val('shuffle', shuffle)
- def update_pretrained_weights(self, weight_path, is_backbone=False):
- """ update_pretrained_weights """
- if 'model' not in self:
- raise RuntimeError(
- "Not able to update pretrained weight path, because no model config was found."
- )
- if isinstance(weight_path, str):
- if urlparse(weight_path).scheme == '':
- # If `weight_path` is a string but not URL (with scheme present),
- # it will be recognized as a local file path.
- weight_path = abspath(weight_path)
- else:
- if weight_path is not None:
- raise TypeError("`weight_path` must be string or None.")
- if is_backbone:
- if 'backbone' not in self.model:
- raise RuntimeError(
- "Not able to update pretrained weight path of backbone, because no backbone config was found."
- )
- self.model['backbone']['pretrained'] = weight_path
- else:
- self.model['pretrained'] = weight_path
- def update_dy2st(self, dy2st):
- """ update_dy2st """
- self.set_val('to_static_training', dy2st)
- def update_dataset(self, dataset_dir, dataset_type=None):
- """ update_dataset """
- raise NotImplementedError
- def get_epochs_iters(self):
- """ get_epochs_iters """
- raise NotImplementedError
- def get_learning_rate(self):
- """ get_learning_rate """
- raise NotImplementedError
- def get_batch_size(self, mode='train'):
- """ get_batch_size """
- raise NotImplementedError
- def get_qat_epochs_iters(self):
- """ get_qat_epochs_iters """
- return self.get_epochs_iters() // 2
- def get_qat_learning_rate(self):
- """ get_qat_learning_rate """
- return self.get_learning_rate() / 2
|