| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ...base import BaseModel
- from ...base.utils.arg import CLIArgument
- from ...base.utils.subprocess import CompletedProcess
- from ....utils.misc import abspath
- class SegModel(BaseModel):
- """ Semantic Segmentation Model """
- def train(self,
- batch_size: int=None,
- learning_rate: float=None,
- epochs_iters: int=None,
- ips: str=None,
- device: str='gpu',
- resume_path: str=None,
- dy2st: bool=False,
- amp: str='OFF',
- num_workers: int=None,
- use_vdl: bool=True,
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """train self
- Args:
- batch_size (int, optional): the train batch size value. Defaults to None.
- learning_rate (float, optional): the train learning rate value. Defaults to None.
- epochs_iters (int, optional): the train epochs value. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- resume_path (str, optional): the checkpoint file path to resume training. Train from scratch if it is set
- to None. Defaults to None.
- dy2st (bool, optional): Enable dynamic to static. Defaults to False.
- amp (str, optional): the amp settings. Defaults to 'OFF'.
- num_workers (int, optional): the workers number. Defaults to None.
- use_vdl (bool, optional): enable VisualDL. Defaults to True.
- save_dir (str, optional): the directory path to save train output. Defaults to None.
- Returns:
- CompletedProcess: the result of training subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- if batch_size is not None:
- cli_args.append(CLIArgument('--batch_size', batch_size))
- if learning_rate is not None:
- cli_args.append(CLIArgument('--learning_rate', learning_rate))
- if epochs_iters is not None:
- cli_args.append(CLIArgument('--iters', epochs_iters))
- # No need to handle `ips`
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- # For compatibility
- resume_dir = kwargs.pop('resume_dir', None)
- if resume_path is None and resume_dir is not None:
- resume_path = os.path.join(resume_dir, 'model.pdparams')
- if resume_path is not None:
- # NOTE: We must use an absolute path here,
- # so we can run the scripts either inside or outside the repo dir.
- resume_path = abspath(resume_path)
- if os.path.basename(resume_path) != 'model.pdparams':
- raise ValueError(f"{resume_path} has an incorrect file name.")
- if not os.path.exists(resume_path):
- raise FileNotFoundError(f"{resume_path} does not exist.")
- resume_dir = os.path.dirname(resume_path)
- opts_path = os.path.join(resume_dir, 'model.pdopt')
- if not os.path.exists(opts_path):
- raise FileNotFoundError(f"{opts_path} must exist.")
- cli_args.append(CLIArgument('--resume_model', resume_dir))
- if dy2st:
- config.update_dy2st(dy2st)
- if use_vdl:
- cli_args.append(CLIArgument('--use_vdl'))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join('output', 'train'))
- cli_args.append(CLIArgument('--save_dir', save_dir))
- save_interval = kwargs.pop('save_interval', None)
- if save_interval is not None:
- cli_args.append(CLIArgument('--save_interval', save_interval))
- do_eval = kwargs.pop('do_eval', True)
- repeats = kwargs.pop('repeats', None)
- seed = kwargs.pop('seed', None)
- profile = kwargs.pop('profile', None)
- if profile is not None:
- cli_args.append(CLIArgument('--profiler_options', profile))
- log_iters = kwargs.pop('log_iters', None)
- if log_iters is not None:
- cli_args.append(CLIArgument('--log_iters', log_iters))
- # Benchmarking mode settings
- benchmark = kwargs.pop('benchmark', None)
- if benchmark is not None:
- envs = benchmark.get('env', None)
- seed = benchmark.get('seed', None)
- repeats = benchmark.get('repeats', None)
- do_eval = benchmark.get('do_eval', False)
- num_workers = benchmark.get('num_workers', None)
- config.update_log_ranks(device)
- amp = benchmark.get('amp', None)
- config.update_print_mem_info(benchmark.get('print_mem_info', True))
- config.update_shuffle(benchmark.get('shuffle', False))
- if repeats is not None:
- assert isinstance(repeats, int), 'repeats must be an integer.'
- cli_args.append(CLIArgument('--repeats', repeats))
- if num_workers is not None:
- assert isinstance(num_workers,
- int), 'num_workers must be an integer.'
- cli_args.append(CLIArgument('--num_workers', num_workers))
- if seed is not None:
- assert isinstance(seed, int), 'seed must be an integer.'
- cli_args.append(CLIArgument('--seed', seed))
- if amp in ['O1', 'O2']:
- cli_args.append(CLIArgument('--precision', 'fp16'))
- cli_args.append(CLIArgument('--amp_level', amp))
- if envs is not None:
- for env_name, env_value in envs.items():
- os.environ[env_name] = str(env_value)
- else:
- if amp is not None:
- if amp != 'OFF':
- cli_args.append(CLIArgument('--precision', 'fp16'))
- cli_args.append(CLIArgument('--amp_level', amp))
- if num_workers is not None:
- cli_args.append(CLIArgument('--num_workers', num_workers))
- if repeats is not None:
- cli_args.append(CLIArgument('--repeats', repeats))
- if seed is not None:
- cli_args.append(CLIArgument('--seed', seed))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.train(
- config_path, cli_args, device, ips, save_dir, do_eval=do_eval)
- def evaluate(self,
- weight_path: str,
- batch_size: int=None,
- ips: str=None,
- device: str='gpu',
- amp: str='OFF',
- num_workers: int=None,
- **kwargs) -> CompletedProcess:
- """evaluate self using specified weight
- Args:
- weight_path (str): the path of model weight file to be evaluated.
- batch_size (int, optional): the batch size value in evaluating. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- amp (str, optional): the AMP setting. Defaults to 'OFF'.
- num_workers (int, optional): the workers number in evaluating. Defaults to None.
- Returns:
- CompletedProcess: the result of evaluating subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- cli_args.append(CLIArgument('--model_path', weight_path))
- if batch_size is not None:
- if batch_size != 1:
- raise ValueError("Batch size other than 1 is not supported.")
- # No need to handle `ips`
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- if amp is not None:
- if amp != 'OFF':
- cli_args.append(CLIArgument('--precision', 'fp16'))
- cli_args.append(CLIArgument('--amp_level', amp))
- if num_workers is not None:
- cli_args.append(CLIArgument('--num_workers', num_workers))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- cp = self.runner.evaluate(config_path, cli_args, device, ips)
- return cp
- def predict(self,
- weight_path: str,
- input_path: str,
- device: str='gpu',
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """predict using specified weight
- Args:
- weight_path (str): the path of model weight file used to predict.
- input_path (str): the path of image file to be predicted.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save predict output. Defaults to None.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- cli_args.append(CLIArgument('--model_path', weight_path))
- input_path = abspath(input_path)
- cli_args.append(CLIArgument('--image_path', input_path))
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join('output', 'predict'))
- cli_args.append(CLIArgument('--save_dir', save_dir))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.predict(config_path, cli_args, device)
- def analyse(self,
- weight_path,
- ips=None,
- device='gpu',
- save_dir=None,
- **kwargs):
- """ analyse """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- cli_args.append(CLIArgument('--model_path', weight_path))
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join('output', 'analysis'))
- cli_args.append(CLIArgument('--save_dir', save_dir))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- cp = self.runner.analyse(config_path, cli_args, device, ips)
- return cp
- def export(self, weight_path: str, save_dir: str,
- **kwargs) -> CompletedProcess:
- """export the dynamic model to static model
- Args:
- weight_path (str): the model weight file path that used to export.
- save_dir (str): the directory path to save export output.
- Returns:
- CompletedProcess: the result of exporting subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- cli_args.append(CLIArgument('--model_path', weight_path))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join('output', 'export'))
- cli_args.append(CLIArgument('--save_dir', save_dir))
- input_shape = kwargs.pop('input_shape', None)
- if input_shape is not None:
- cli_args.append(CLIArgument('--input_shape', *input_shape))
- output_op = kwargs.pop('output_op', None)
- if output_op is not None:
- assert output_op in ['softmax', 'argmax'
- ], "`output_op` must be 'softmax' or 'argmax'."
- cli_args.append(CLIArgument('--output_op', output_op))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.export(config_path, cli_args, None)
- def infer(self,
- model_dir: str,
- input_path: str,
- device: str='gpu',
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """predict image using infernece model
- Args:
- model_dir (str): the directory path of inference model files that would use to predict.
- input_path (str): the path of image that would be predict.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of infering subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- model_dir = abspath(model_dir)
- input_path = abspath(input_path)
- cli_args.append(CLIArgument('--image_path', input_path))
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join('output', 'infer'))
- cli_args.append(CLIArgument('--save_dir', save_dir))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- deploy_config_path = os.path.join(model_dir, 'inference.yml')
- return self.runner.infer(deploy_config_path, cli_args, device)
- def compression(self,
- weight_path: str,
- batch_size: int=None,
- learning_rate: float=None,
- epochs_iters: int=None,
- device: str='gpu',
- use_vdl: bool=True,
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """compression model
- Args:
- weight_path (str): the path to weight file of model.
- batch_size (int, optional): the batch size value of compression training. Defaults to None.
- learning_rate (float, optional): the learning rate value of compression training. Defaults to None.
- epochs_iters (int, optional): the epochs or iters of compression training. Defaults to None.
- device (str, optional): the device to run compression training. Defaults to 'gpu'.
- use_vdl (bool, optional): whether or not to use VisualDL. Defaults to True.
- save_dir (str, optional): the directory to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of compression subprocess execution.
- """
- # Update YAML config file
- # NOTE: In PaddleSeg, QAT does not use a different config file than regular training
- # Reusing `self.config` preserves the config items modified by the user when
- # `SegModel` is initialized with a `SegConfig` object.
- config = self.config.copy()
- train_cli_args = []
- export_cli_args = []
- weight_path = abspath(weight_path)
- train_cli_args.append(CLIArgument('--model_path', weight_path))
- if batch_size is not None:
- train_cli_args.append(CLIArgument('--batch_size', batch_size))
- if learning_rate is not None:
- train_cli_args.append(CLIArgument('--learning_rate', learning_rate))
- if epochs_iters is not None:
- train_cli_args.append(CLIArgument('--iters', epochs_iters))
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- train_cli_args.append(CLIArgument('--device', device_type))
- if use_vdl:
- train_cli_args.append(CLIArgument('--use_vdl'))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join('output', 'compress'))
- train_cli_args.append(CLIArgument('--save_dir', save_dir))
- # The exported model saved in a subdirectory named `export`
- export_cli_args.append(
- CLIArgument('--save_dir', os.path.join(save_dir, 'export')))
- input_shape = kwargs.pop('input_shape', None)
- if input_shape is not None:
- export_cli_args.append(CLIArgument('--input_shape', *input_shape))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.compression(config_path, train_cli_args,
- export_cli_args, device, save_dir)
|