| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import tempfile
- from ...base import BaseRunner
- from ...base.utils.arg import gather_opts_args
- from ...base.utils.subprocess import CompletedProcess
- class SegRunner(BaseRunner):
- """ Semantic Segmentation Runner """
- def train(self,
- config_path: str,
- cli_args: list,
- device: str,
- ips: str,
- save_dir: str,
- do_eval=True) -> CompletedProcess:
- """train model
- Args:
- config_path (str): the config file path used to train.
- cli_args (list): the additional parameters.
- device (str): the training device.
- ips (str): the ip addresses of nodes when using distribution.
- save_dir (str): the directory path to save training output.
- do_eval (bool, optional): whether or not to evaluate model during training. Defaults to True.
- Returns:
- CompletedProcess: the result of training subprocess execution.
- """
- args, env = self.distributed(device, ips, log_dir=save_dir)
- cli_args = self._gather_opts_args(cli_args)
- cmd = [*args, 'tools/train.py']
- if do_eval:
- cmd.append('--do_eval')
- cmd.extend(['--config', config_path, *cli_args])
- return self.run_cmd(
- cmd,
- env=env,
- switch_wdir=True,
- echo=True,
- silent=False,
- capture_output=True,
- log_path=self._get_train_log_path(save_dir))
- def evaluate(self, config_path: str, cli_args: list, device: str,
- ips: str) -> CompletedProcess:
- """run model evaluating
- Args:
- config_path (str): the config file path used to evaluate.
- cli_args (list): the additional parameters.
- device (str): the evaluating device.
- ips (str): the ip addresses of nodes when using distribution.
- Returns:
- CompletedProcess: the result of evaluating subprocess execution.
- """
- args, env = self.distributed(device, ips)
- cli_args = self._gather_opts_args(cli_args)
- cmd = [*args, 'tools/val.py', '--config', config_path, *cli_args]
- cp = self.run_cmd(
- cmd,
- env=env,
- switch_wdir=True,
- echo=True,
- silent=False,
- capture_output=True)
- if cp.returncode == 0:
- metric_dict = _extract_eval_metrics(cp.stdout)
- cp.metrics = metric_dict
- return cp
- def predict(self, config_path: str, cli_args: list,
- device: str) -> CompletedProcess:
- """run predicting using dynamic mode
- Args:
- config_path (str): the config file path used to predict.
- cli_args (list): the additional parameters.
- device (str): unused.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- # `device` unused
- cli_args = self._gather_opts_args(cli_args)
- cmd = [
- self.python, 'tools/predict.py', '--config', config_path, *cli_args
- ]
- return self.run_cmd(cmd, switch_wdir=True, echo=True, silent=False)
- def analyse(self, config_path, cli_args, device, ips):
- """ analyse """
- args, env = self.distributed(device, ips)
- cli_args = self._gather_opts_args(cli_args)
- cmd = [*args, 'tools/analyse.py', '--config', config_path, *cli_args]
- cp = self.run_cmd(
- cmd,
- env=env,
- switch_wdir=True,
- echo=True,
- silent=False,
- capture_output=True)
- return cp
- def export(self, config_path: str, cli_args: list,
- device: str) -> CompletedProcess:
- """run exporting
- Args:
- config_path (str): the path of config file used to export.
- cli_args (list): the additional parameters.
- device (str): unused.
- Returns:
- CompletedProcess: the result of exporting subprocess execution.
- """
- # `device` unused
- cli_args = self._gather_opts_args(cli_args)
- cmd = [
- self.python, 'tools/export.py', '--for_fd', '--config', config_path,
- *cli_args
- ]
- cp = self.run_cmd(cmd, switch_wdir=True, echo=True, silent=False)
- return cp
- def infer(self, config_path: str, cli_args: list,
- device: str) -> CompletedProcess:
- """run predicting using inference model
- Args:
- config_path (str): the path of config file used to predict.
- cli_args (list): the additional parameters.
- device (str): unused.
- Returns:
- CompletedProcess: the result of infering subprocess execution.
- """
- # `device` unused
- cli_args = self._gather_opts_args(cli_args)
- cmd = [
- self.python, 'deploy/python/infer.py', '--config', config_path,
- *cli_args
- ]
- return self.run_cmd(cmd, switch_wdir=True, echo=True, silent=False)
- def compression(self,
- config_path: str,
- train_cli_args: list,
- export_cli_args: list,
- device: str,
- train_save_dir: str) -> CompletedProcess:
- """run compression model
- Args:
- config_path (str): the path of config file used to predict.
- train_cli_args (list): the additional training parameters.
- export_cli_args (list): the additional exporting parameters.
- device (str): the running device.
- train_save_dir (str): the directory path to save output.
- Returns:
- CompletedProcess: the result of compression subprocess execution.
- """
- # Step 1: Train model
- args, env = self.distributed(device, log_dir=train_save_dir)
- train_cli_args = self._gather_opts_args(train_cli_args)
- # Note that we add `--do_eval` here so we can have `train_save_dir/best_model/model.pdparams` saved
- cmd = [
- *args, 'deploy/slim/quant/qat_train.py', '--do_eval', '--config',
- config_path, *train_cli_args
- ]
- cp_train = self.run_cmd(
- cmd,
- env=env,
- switch_wdir=True,
- echo=True,
- silent=False,
- capture_output=True,
- log_path=self._get_train_log_path(train_save_dir))
- # Step 2: Export model
- export_cli_args = self._gather_opts_args(export_cli_args)
- # We export the best model on the validation dataset
- weight_path = os.path.join(train_save_dir, 'best_model',
- 'model.pdparams')
- cmd = [
- self.python, 'deploy/slim/quant/qat_export.py', '--for_fd',
- '--config', config_path, '--model_path', weight_path,
- *export_cli_args
- ]
- cp_export = self.run_cmd(cmd, switch_wdir=True, echo=True, silent=False)
- return cp_train, cp_export
- def _gather_opts_args(self, args):
- # Since `--opts` in PaddleSeg does not use `action='append'`
- # We collect and arrange all opts args here
- # e.g.: python tools/train.py --config xxx --opts a=1 c=3 --opts b=2
- # => python tools/train.py --config xxx c=3 --opts a=1 b=2
- return gather_opts_args(args, '--opts')
- def _extract_eval_metrics(stdout: str) -> dict:
- """extract evaluation metrics from training log
- Args:
- stdout (str): the training log
- Returns:
- dict: the training metric
- """
- import re
- _DP = r'[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?'
- pattern = r'Images: \d+ mIoU: (_dp) Acc: (_dp) Kappa: (_dp) Dice: (_dp)'.replace(
- '_dp', _DP)
- keys = ['mIoU', 'Acc', 'Kappa', 'Dice']
- metric_dict = dict()
- pattern = re.compile(pattern)
- # TODO: Use lazy version to make it more efficient
- lines = stdout.splitlines()
- for line in lines:
- match = pattern.search(line)
- if match:
- for k, v in zip(keys, map(float, match.groups())):
- metric_dict[k] = v
- return metric_dict
|