pretrain_weights.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. import paddlex
  2. import paddlex.utils.logging as logging
  3. import os
  4. import os.path as osp
  5. image_pretrain = {
  6. 'ResNet18':
  7. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar',
  8. 'ResNet34':
  9. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar',
  10. 'ResNet50':
  11. 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar',
  12. 'ResNet101':
  13. 'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar',
  14. 'ResNet50_vd':
  15. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar',
  16. 'ResNet101_vd':
  17. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar',
  18. 'ResNet50_vd_ssld':
  19. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar',
  20. 'ResNet101_vd_ssld':
  21. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar',
  22. 'MobileNetV1':
  23. 'http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar',
  24. 'MobileNetV2_x1.0':
  25. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar',
  26. 'MobileNetV2_x0.5':
  27. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar',
  28. 'MobileNetV2_x2.0':
  29. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar',
  30. 'MobileNetV2_x0.25':
  31. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar',
  32. 'MobileNetV2_x1.5':
  33. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar',
  34. 'MobileNetV3_small':
  35. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar',
  36. 'MobileNetV3_large':
  37. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar',
  38. 'MobileNetV3_small_x1_0_ssld':
  39. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar',
  40. 'MobileNetV3_large_x1_0_ssld':
  41. 'https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar',
  42. 'DarkNet53':
  43. 'https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar',
  44. 'DenseNet121':
  45. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar',
  46. 'DenseNet161':
  47. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar',
  48. 'DenseNet201':
  49. 'https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar',
  50. 'DetResNet50':
  51. 'https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar',
  52. 'SegXception41':
  53. 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar',
  54. 'SegXception65':
  55. 'https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar',
  56. 'ShuffleNetV2':
  57. 'https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar',
  58. 'HRNet_W18':
  59. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar',
  60. 'HRNet_W30':
  61. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar',
  62. 'HRNet_W32':
  63. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar',
  64. 'HRNet_W40':
  65. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar',
  66. 'HRNet_W44':
  67. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar',
  68. 'HRNet_W48':
  69. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar',
  70. 'HRNet_W60':
  71. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W60_C_pretrained.tar',
  72. 'HRNet_W64':
  73. 'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar',
  74. 'AlexNet':
  75. 'http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar'
  76. }
  77. coco_pretrain = {
  78. 'YOLOv3_DarkNet53_COCO':
  79. 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar',
  80. 'YOLOv3_MobileNetV1_COCO':
  81. 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar',
  82. 'YOLOv3_MobileNetV3_large_COCO':
  83. 'https://bj.bcebos.com/paddlex/models/yolov3_mobilenet_v3.tar',
  84. 'YOLOv3_ResNet34_COCO':
  85. 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar',
  86. 'YOLOv3_ResNet50_vd_COCO':
  87. 'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar',
  88. 'FasterRCNN_ResNet18_COCO':
  89. 'https://bj.bcebos.com/paddlex/pretrained_weights/faster_rcnn_r18_fpn_1x.tar',
  90. 'FasterRCNN_ResNet50_COCO':
  91. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar',
  92. 'FasterRCNN_ResNet50_vd_COCO':
  93. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar',
  94. 'FasterRCNN_ResNet101_COCO':
  95. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar',
  96. 'FasterRCNN_ResNet101_vd_COCO':
  97. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar',
  98. 'FasterRCNN_HRNet_W18_COCO':
  99. 'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_2x.tar',
  100. 'MaskRCNN_ResNet18_COCO':
  101. 'https://bj.bcebos.com/paddlex/pretrained_weights/mask_rcnn_r18_fpn_1x.tar',
  102. 'MaskRCNN_ResNet50_COCO':
  103. 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar',
  104. 'MaskRCNN_ResNet50_vd_COCO':
  105. 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar',
  106. 'MaskRCNN_ResNet101_COCO':
  107. 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar',
  108. 'MaskRCNN_ResNet101_vd_COCO':
  109. 'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar',
  110. 'MaskRCNN_HRNet_W18_COCO':
  111. 'https://bj.bcebos.com/paddlex/pretrained_weights/mask_rcnn_hrnetv2p_w18_2x.tar',
  112. 'UNet_COCO': 'https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz',
  113. 'DeepLabv3p_MobileNetV2_x1.0_COCO':
  114. 'https://bj.bcebos.com/v1/paddleseg/deeplab_mobilenet_x1_0_coco.tgz',
  115. 'DeepLabv3p_Xception65_COCO':
  116. 'https://paddleseg.bj.bcebos.com/models/xception65_coco.tgz',
  117. 'PPYOLO_ResNet50_vd_ssld_COCO':
  118. 'https://bj.bcebos.com/paddlex/models/ppyolo_resnet50_vd_ssld.tar'
  119. }
  120. cityscapes_pretrain = {
  121. 'DeepLabv3p_MobileNetV3_large_x1_0_ssld_CITYSCAPES':
  122. 'https://paddleseg.bj.bcebos.com/models/deeplabv3p_mobilenetv3_large_cityscapes.tar.gz',
  123. 'DeepLabv3p_MobileNetV2_x1.0_CITYSCAPES':
  124. 'https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz',
  125. 'DeepLabv3p_Xception65_CITYSCAPES':
  126. 'https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz',
  127. 'HRNet_W18_CITYSCAPES':
  128. 'https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz',
  129. 'FastSCNN_CITYSCAPES':
  130. 'https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar'
  131. }
  132. def get_pretrain_weights(flag, class_name, backbone, save_dir):
  133. if flag is None:
  134. return None
  135. elif osp.isdir(flag):
  136. return flag
  137. elif osp.isfile(flag):
  138. return flag
  139. warning_info = "{} does not support to be finetuned with weights pretrained on the {} dataset, so pretrain_weights is forced to be set to {}"
  140. if flag == 'COCO':
  141. if class_name == 'DeepLabv3p' and backbone in [
  142. 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5',
  143. 'MobileNetV2_x1.5', 'MobileNetV2_x2.0',
  144. 'MobileNetV3_large_x1_0_ssld'
  145. ]:
  146. model_name = '{}_{}'.format(class_name, backbone)
  147. logging.warning(warning_info.format(model_name, flag, 'IMAGENET'))
  148. flag = 'IMAGENET'
  149. elif class_name == 'HRNet':
  150. logging.warning(warning_info.format(class_name, flag, 'IMAGENET'))
  151. flag = 'IMAGENET'
  152. elif class_name == 'FastSCNN':
  153. logging.warning(warning_info.format(class_name, flag, 'CITYSCAPES'))
  154. flag = 'CITYSCAPES'
  155. elif flag == 'CITYSCAPES':
  156. model_name = '{}_{}'.format(class_name, backbone)
  157. if class_name == 'UNet':
  158. logging.warning(warning_info.format(class_name, flag, 'COCO'))
  159. flag = 'COCO'
  160. if class_name == 'HRNet' and backbone.split('_')[
  161. -1] in ['W30', 'W32', 'W40', 'W48', 'W60', 'W64']:
  162. logging.warning(warning_info.format(backbone, flag, 'IMAGENET'))
  163. flag = 'IMAGENET'
  164. if class_name == 'DeepLabv3p' and backbone in [
  165. 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5',
  166. 'MobileNetV2_x1.5', 'MobileNetV2_x2.0'
  167. ]:
  168. model_name = '{}_{}'.format(class_name, backbone)
  169. logging.warning(warning_info.format(model_name, flag, 'IMAGENET'))
  170. flag = 'IMAGENET'
  171. elif flag == 'IMAGENET':
  172. if class_name == 'UNet':
  173. logging.warning(warning_info.format(class_name, flag, 'COCO'))
  174. flag = 'COCO'
  175. elif class_name == 'FastSCNN':
  176. logging.warning(warning_info.format(class_name, flag, 'CITYSCAPES'))
  177. flag = 'CITYSCAPES'
  178. if flag == 'IMAGENET':
  179. new_save_dir = save_dir
  180. if hasattr(paddlex, 'pretrain_dir'):
  181. new_save_dir = paddlex.pretrain_dir
  182. if backbone.startswith('Xception'):
  183. backbone = 'Seg{}'.format(backbone)
  184. elif backbone == 'MobileNetV2':
  185. backbone = 'MobileNetV2_x1.0'
  186. elif backbone == 'MobileNetV3_small_ssld':
  187. backbone = 'MobileNetV3_small_x1_0_ssld'
  188. elif backbone == 'MobileNetV3_large_ssld':
  189. backbone = 'MobileNetV3_large_x1_0_ssld'
  190. if class_name in ['YOLOv3', 'FasterRCNN', 'MaskRCNN']:
  191. if backbone == 'ResNet50':
  192. backbone = 'DetResNet50'
  193. assert backbone in image_pretrain, "There is not ImageNet pretrain weights for {}, you may try COCO.".format(
  194. backbone)
  195. if getattr(paddlex, 'gui_mode', False):
  196. url = image_pretrain[backbone]
  197. fname = osp.split(url)[-1].split('.')[0]
  198. paddlex.utils.download_and_decompress(url, path=new_save_dir)
  199. return osp.join(new_save_dir, fname)
  200. import paddlehub as hub
  201. try:
  202. logging.info(
  203. "Connecting PaddleHub server to get pretrain weights...")
  204. hub.download(backbone, save_path=new_save_dir)
  205. except Exception as e:
  206. logging.error(
  207. "Couldn't download pretrain weight, you can download it manualy from {} (decompress the file if it is a compressed file), and set pretrain weights by your self".
  208. format(image_pretrain[backbone]),
  209. exit=False)
  210. if isinstance(e, hub.ResourceNotFoundError):
  211. raise Exception("Resource for backbone {} not found".format(
  212. backbone))
  213. elif isinstance(e, hub.ServerConnectionError):
  214. raise Exception(
  215. "Cannot get reource for backbone {}, please check your internet connection"
  216. .format(backbone))
  217. else:
  218. raise Exception(
  219. "Unexpected error, please make sure paddlehub >= 1.6.2")
  220. return osp.join(new_save_dir, backbone)
  221. elif flag in ['COCO', 'CITYSCAPES']:
  222. new_save_dir = save_dir
  223. if hasattr(paddlex, 'pretrain_dir'):
  224. new_save_dir = paddlex.pretrain_dir
  225. if class_name in [
  226. 'YOLOv3', 'FasterRCNN', 'MaskRCNN', 'DeepLabv3p', 'PPYOLO'
  227. ]:
  228. backbone = '{}_{}'.format(class_name, backbone)
  229. backbone = "{}_{}".format(backbone, flag)
  230. if flag == 'COCO':
  231. url = coco_pretrain[backbone]
  232. elif flag == 'CITYSCAPES':
  233. url = cityscapes_pretrain[backbone]
  234. fname = osp.split(url)[-1].split('.')[0]
  235. if getattr(paddlex, 'gui_mode', False):
  236. paddlex.utils.download_and_decompress(url, path=new_save_dir)
  237. return osp.join(new_save_dir, fname)
  238. import paddlehub as hub
  239. try:
  240. logging.info(
  241. "Connecting PaddleHub server to get pretrain weights...")
  242. hub.download(backbone, save_path=new_save_dir)
  243. except Exception as e:
  244. logging.error(
  245. "Couldn't download pretrain weight, you can download it manualy from {} (decompress the file if it is a compressed file), and set pretrain weights by your self".
  246. format(url),
  247. exit=False)
  248. if isinstance(hub.ResourceNotFoundError):
  249. raise Exception("Resource for backbone {} not found".format(
  250. backbone))
  251. elif isinstance(hub.ServerConnectionError):
  252. raise Exception(
  253. "Cannot get reource for backbone {}, please check your internet connection"
  254. .format(backbone))
  255. else:
  256. raise Exception(
  257. "Unexpected error, please make sure paddlehub >= 1.6.2")
  258. return osp.join(new_save_dir, backbone)
  259. else:
  260. logging.error("Path of retrain weights '{}' is not exists!".format(
  261. flag))