yolov3_darknet53.py 1.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.det import transforms
  5. import paddlex as pdx
  6. # 下载和解压昆虫检测数据集
  7. insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  8. pdx.utils.download_and_decompress(insect_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.MixupImage(mixup_epoch=250),
  12. transforms.RandomDistort(),
  13. transforms.RandomExpand(),
  14. transforms.RandomCrop(),
  15. transforms.Resize(target_size=608, interp='RANDOM'),
  16. transforms.RandomHorizontalFlip(),
  17. transforms.Normalize(),
  18. ])
  19. eval_transforms = transforms.Compose([
  20. transforms.Resize(target_size=608, interp='CUBIC'),
  21. transforms.Normalize(),
  22. ])
  23. # 定义训练和验证所用的数据集
  24. train_dataset = pdx.datasets.VOCDetection(
  25. data_dir='insect_det',
  26. file_list='insect_det/train_list.txt',
  27. label_list='insect_det/labels.txt',
  28. transforms=train_transforms,
  29. shuffle=True)
  30. eval_dataset = pdx.datasets.VOCDetection(
  31. data_dir='insect_det',
  32. file_list='insect_det/val_list.txt',
  33. label_list='insect_det/labels.txt',
  34. transforms=eval_transforms)
  35. # 初始化模型,并进行训练
  36. # 可使用VisualDL查看训练指标
  37. # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
  38. # 浏览器打开 https://0.0.0.0:8001即可
  39. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  40. num_classes = len(train_dataset.labels)
  41. model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
  42. model.train(
  43. num_epochs=270,
  44. train_dataset=train_dataset,
  45. train_batch_size=8,
  46. eval_dataset=eval_dataset,
  47. learning_rate=0.000125,
  48. lr_decay_epochs=[210, 240],
  49. save_dir='output/yolov3_darknet53',
  50. use_vdl=True)