unet.py 1.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. import paddlex as pdx
  5. from paddlex.seg import transforms
  6. # 下载和解压视盘分割数据集
  7. optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
  8. pdx.utils.download_and_decompress(optic_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.RandomHorizontalFlip(),
  12. transforms.ResizeRangeScaling(),
  13. transforms.RandomPaddingCrop(crop_size=512),
  14. transforms.Normalize()
  15. ])
  16. eval_transforms = transforms.Compose([
  17. transforms.ResizeByLong(long_size=512),
  18. transforms.Padding(target_size=512),
  19. transforms.Normalize()
  20. ])
  21. # 定义训练和验证所用的数据集
  22. train_dataset = pdx.datasets.SegDataset(
  23. data_dir='optic_disc_seg',
  24. file_list='optic_disc_seg/train_list.txt',
  25. label_list='optic_disc_seg/labels.txt',
  26. transforms=train_transforms,
  27. shuffle=True)
  28. eval_dataset = pdx.datasets.SegDataset(
  29. data_dir='optic_disc_seg',
  30. file_list='optic_disc_seg/val_list.txt',
  31. label_list='optic_disc_seg/labels.txt',
  32. transforms=eval_transforms)
  33. # 初始化模型,并进行训练
  34. # 可使用VisualDL查看训练指标
  35. # VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001
  36. # 浏览器打开 https://0.0.0.0:8001即可
  37. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  38. num_classes = len(train_dataset.labels)
  39. model = pdx.seg.UNet(num_classes=num_classes)
  40. model.train(
  41. num_epochs=20,
  42. train_dataset=train_dataset,
  43. train_batch_size=4,
  44. eval_dataset=eval_dataset,
  45. learning_rate=0.01,
  46. save_dir='output/unet',
  47. use_vdl=True)