| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import math
- import tqdm
- import numpy as np
- from multiprocessing.pool import ThreadPool
- import paddle.fluid as fluid
- import paddlex.utils.logging as logging
- import paddlex
- import copy
- import os.path as osp
- from paddlex.cv.transforms import arrange_transforms
- from collections import OrderedDict
- from .faster_rcnn import FasterRCNN
- from .utils.detection_eval import eval_results, bbox2out, mask2out
- class MaskRCNN(FasterRCNN):
- """构建MaskRCNN,并实现其训练、评估、预测和模型导出。
- Args:
- num_classes (int): 包含了背景类的类别数。默认为81。
- backbone (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50',
- 'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18']。默认为'ResNet50'。
- with_fpn (bool): 是否使用FPN结构。默认为True。
- aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
- anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
- """
- def __init__(self,
- num_classes=81,
- backbone='ResNet50',
- with_fpn=True,
- aspect_ratios=[0.5, 1.0, 2.0],
- anchor_sizes=[32, 64, 128, 256, 512]):
- self.init_params = locals()
- backbones = [
- 'ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd',
- 'HRNet_W18'
- ]
- assert backbone in backbones, "backbone should be one of {}".format(
- backbones)
- super(FasterRCNN, self).__init__('detector')
- self.backbone = backbone
- self.num_classes = num_classes
- self.with_fpn = with_fpn
- self.anchor_sizes = anchor_sizes
- self.labels = None
- if with_fpn:
- self.mask_head_resolution = 28
- else:
- self.mask_head_resolution = 14
- self.fixed_input_shape = None
- def build_net(self, mode='train'):
- train_pre_nms_top_n = 2000 if self.with_fpn else 12000
- test_pre_nms_top_n = 1000 if self.with_fpn else 6000
- num_convs = 4 if self.with_fpn else 0
- model = paddlex.cv.nets.detection.MaskRCNN(
- backbone=self._get_backbone(self.backbone),
- num_classes=self.num_classes,
- mode=mode,
- with_fpn=self.with_fpn,
- train_pre_nms_top_n=train_pre_nms_top_n,
- test_pre_nms_top_n=test_pre_nms_top_n,
- num_convs=num_convs,
- mask_head_resolution=self.mask_head_resolution,
- fixed_input_shape=self.fixed_input_shape)
- inputs = model.generate_inputs()
- if mode == 'train':
- model_out = model.build_net(inputs)
- loss = model_out['loss']
- self.optimizer.minimize(loss)
- outputs = OrderedDict(
- [('loss', model_out['loss']),
- ('loss_cls', model_out['loss_cls']),
- ('loss_bbox', model_out['loss_bbox']),
- ('loss_mask', model_out['loss_mask']),
- ('loss_rpn_cls', model_out['loss_rpn_cls']), (
- 'loss_rpn_bbox', model_out['loss_rpn_bbox'])])
- else:
- outputs = model.build_net(inputs)
- return inputs, outputs
- def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
- lr_decay_epochs, lr_decay_gamma,
- num_steps_each_epoch):
- if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
- logging.error(
- "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
- exit=False)
- logging.error(
- "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
- exit=False)
- logging.error(
- "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
- format(lr_decay_epochs[0] * num_steps_each_epoch, warmup_steps
- // num_steps_each_epoch))
- boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
- values = [(lr_decay_gamma**i) * learning_rate
- for i in range(len(lr_decay_epochs) + 1)]
- lr_decay = fluid.layers.piecewise_decay(
- boundaries=boundaries, values=values)
- lr_warmup = fluid.layers.linear_lr_warmup(
- learning_rate=lr_decay,
- warmup_steps=warmup_steps,
- start_lr=warmup_start_lr,
- end_lr=learning_rate)
- optimizer = fluid.optimizer.Momentum(
- learning_rate=lr_warmup,
- momentum=0.9,
- regularization=fluid.regularizer.L2Decay(1e-04))
- return optimizer
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=1,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=1.0 / 800,
- warmup_steps=500,
- warmup_start_lr=1.0 / 2400,
- lr_decay_epochs=[8, 11],
- lr_decay_gamma=0.1,
- metric=None,
- use_vdl=False,
- early_stop=False,
- early_stop_patience=5,
- resume_checkpoint=None):
- """训练。
- Args:
- num_epochs (int): 训练迭代轮数。
- train_dataset (paddlex.datasets): 训练数据读取器。
- train_batch_size (int): 训练或验证数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与
- 显卡数量之商为验证数据batch大小。默认值为1。
- eval_dataset (paddlex.datasets): 验证数据读取器。
- save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
- log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为20。
- save_dir (str): 模型保存路径。默认值为'output'。
- pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
- 则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',
- 则自动下载在COCO数据集上预训练的模型权重;若为None,则不使用预训练模型。默认为None。
- optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
- fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
- learning_rate (float): 默认优化器的学习率。默认为1.0/800。
- warmup_steps (int): 默认优化器进行warmup过程的步数。默认为500。
- warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为1.0/2400。
- lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[8, 11]。
- lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
- metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。
- use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
- early_stop (bool): 是否使用提前终止训练策略。默认值为False。
- early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
- 连续下降或持平,则终止训练。默认值为5。
- resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
- Raises:
- ValueError: 评估类型不在指定列表中。
- ValueError: 模型从inference model进行加载。
- """
- if metric is None:
- if isinstance(train_dataset, paddlex.datasets.CocoDetection) or \
- isinstance(train_dataset, paddlex.datasets.EasyDataDet):
- metric = 'COCO'
- else:
- raise Exception(
- "train_dataset should be datasets.COCODetection or datasets.EasyDataDet."
- )
- assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
- self.metric = metric
- if not self.trainable:
- raise Exception("Model is not trainable from load_model method.")
- self.labels = copy.deepcopy(train_dataset.labels)
- self.labels.insert(0, 'background')
- # 构建训练网络
- if optimizer is None:
- # 构建默认的优化策略
- num_steps_each_epoch = train_dataset.num_samples // train_batch_size
- optimizer = self.default_optimizer(
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- num_steps_each_epoch=num_steps_each_epoch)
- self.optimizer = optimizer
- # 构建训练、验证、测试网络
- self.build_program()
- fuse_bn = True
- if self.with_fpn and self.backbone in [
- 'ResNet18', 'ResNet50', 'HRNet_W18'
- ]:
- fuse_bn = False
- self.net_initialize(
- startup_prog=fluid.default_startup_program(),
- pretrain_weights=pretrain_weights,
- fuse_bn=fuse_bn,
- save_dir=save_dir,
- resume_checkpoint=resume_checkpoint)
- # 训练
- self.train_loop(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- use_vdl=use_vdl,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- def evaluate(self,
- eval_dataset,
- batch_size=1,
- epoch_id=None,
- metric=None,
- return_details=False):
- """评估。
- Args:
- eval_dataset (paddlex.datasets): 验证数据读取器。
- batch_size (int): 验证数据批大小。默认为1。当前只支持设置为1。
- epoch_id (int): 当前评估模型所在的训练轮数。
- metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
- 根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
- 如为COCODetection,则metric为'COCO'。
- return_details (bool): 是否返回详细信息。默认值为False。
- Returns:
- tuple (metrics, eval_details) /dict (metrics): 当return_details为True时,返回(metrics, eval_details),
- 当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'和'segm_mmap'
- 或者’bbox_map‘和'segm_map',分别表示预测框和分割区域平均准确率平均值在
- 各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict,
- 包含关键字:'bbox',对应元素预测框结果列表,每个预测结果由图像id、预测框类别id、
- 预测框坐标、预测框得分;'mask',对应元素预测区域结果列表,每个预测结果由图像id、
- 预测区域类别id、预测区域坐标、预测区域得分;’gt‘:真实标注框和标注区域相关信息。
- """
- arrange_transforms(
- model_type=self.model_type,
- class_name=self.__class__.__name__,
- transforms=eval_dataset.transforms,
- mode='eval')
- if metric is None:
- if hasattr(self, 'metric') and self.metric is not None:
- metric = self.metric
- else:
- if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
- metric = 'COCO'
- else:
- raise Exception(
- "eval_dataset should be datasets.COCODetection.")
- assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
- if batch_size > 1:
- batch_size = 1
- logging.warning(
- "Mask RCNN supports batch_size=1 only during evaluating, so batch_size is forced to be set to 1."
- )
- data_generator = eval_dataset.generator(
- batch_size=batch_size, drop_last=False)
- total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
- results = list()
- logging.info(
- "Start to evaluating(total_samples={}, total_steps={})...".format(
- eval_dataset.num_samples, total_steps))
- for step, data in tqdm.tqdm(
- enumerate(data_generator()), total=total_steps):
- images = np.array([d[0] for d in data]).astype('float32')
- im_infos = np.array([d[1] for d in data]).astype('float32')
- im_shapes = np.array([d[3] for d in data]).astype('float32')
- feed_data = {
- 'image': images,
- 'im_info': im_infos,
- 'im_shape': im_shapes,
- }
- with fluid.scope_guard(self.scope):
- outputs = self.exe.run(
- self.test_prog,
- feed=[feed_data],
- fetch_list=list(self.test_outputs.values()),
- return_numpy=False)
- res = {
- 'bbox': (np.array(outputs[0]),
- outputs[0].recursive_sequence_lengths()),
- 'mask': (np.array(outputs[1]),
- outputs[1].recursive_sequence_lengths())
- }
- res_im_id = [d[2] for d in data]
- res['im_info'] = (im_infos, [])
- res['im_shape'] = (im_shapes, [])
- res['im_id'] = (np.array(res_im_id), [])
- results.append(res)
- logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
- 1, total_steps))
- ap_stats, eval_details = eval_results(
- results,
- 'COCO',
- eval_dataset.coco_gt,
- with_background=True,
- resolution=self.mask_head_resolution)
- if metric == 'VOC':
- if isinstance(ap_stats[0], np.ndarray) and isinstance(ap_stats[1],
- np.ndarray):
- metrics = OrderedDict(
- zip(['bbox_map', 'segm_map'],
- [ap_stats[0][1], ap_stats[1][1]]))
- else:
- metrics = OrderedDict(
- zip(['bbox_map', 'segm_map'], [0.0, 0.0]))
- elif metric == 'COCO':
- if isinstance(ap_stats[0], np.ndarray) and isinstance(ap_stats[1],
- np.ndarray):
- metrics = OrderedDict(
- zip(['bbox_mmap', 'segm_mmap'],
- [ap_stats[0][0], ap_stats[1][0]]))
- else:
- metrics = OrderedDict(
- zip(['bbox_mmap', 'segm_mmap'], [0.0, 0.0]))
- if return_details:
- return metrics, eval_details
- return metrics
- @staticmethod
- def _postprocess(res, batch_size, num_classes, mask_head_resolution,
- labels):
- clsid2catid = dict({i: i for i in range(num_classes)})
- xywh_results = bbox2out([res], clsid2catid)
- segm_results = mask2out([res], clsid2catid, mask_head_resolution)
- preds = [[] for i in range(batch_size)]
- import pycocotools.mask as mask_util
- for index, xywh_res in enumerate(xywh_results):
- image_id = xywh_res['image_id']
- del xywh_res['image_id']
- xywh_res['mask'] = mask_util.decode(segm_results[index][
- 'segmentation'])
- xywh_res['category'] = labels[xywh_res['category_id']]
- preds[image_id].append(xywh_res)
- return preds
- def predict(self, img_file, transforms=None):
- """预测。
- Args:
- img_file(str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
- transforms (paddlex.det.transforms): 数据预处理操作。
- Returns:
- lict: 预测结果列表,每个预测结果由预测框类别标签、预测框类别名称、
- 预测框坐标(坐标格式为[xmin, ymin, w, h])、
- 原图大小的预测二值图(1表示预测框类别,0表示背景类)、
- 预测框得分组成。
- """
- if transforms is None and not hasattr(self, 'test_transforms'):
- raise Exception("transforms need to be defined, now is None.")
- if isinstance(img_file, (str, np.ndarray)):
- images = [img_file]
- else:
- raise Exception("img_file must be str/np.ndarray")
- if transforms is None:
- transforms = self.test_transforms
- im, im_resize_info, im_shape = FasterRCNN._preprocess(
- images, transforms, self.model_type, self.__class__.__name__)
- with fluid.scope_guard(self.scope):
- result = self.exe.run(self.test_prog,
- feed={
- 'image': im,
- 'im_info': im_resize_info,
- 'im_shape': im_shape
- },
- fetch_list=list(self.test_outputs.values()),
- return_numpy=False,
- use_program_cache=True)
- res = {
- k: (np.array(v), v.recursive_sequence_lengths())
- for k, v in zip(list(self.test_outputs.keys()), result)
- }
- res['im_id'] = (np.array(
- [[i] for i in range(len(images))]).astype('int32'), [])
- res['im_shape'] = (np.array(im_shape), [])
- preds = MaskRCNN._postprocess(res,
- len(images), self.num_classes,
- self.mask_head_resolution, self.labels)
- return preds[0]
- def batch_predict(self, img_file_list, transforms=None):
- """预测。
- Args:
- img_file_list(list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径
- 也可以是解码后的排列格式为(H,W,C)且类型为float32且为BGR格式的数组。
- transforms (paddlex.det.transforms): 数据预处理操作。
- Returns:
- dict: 每个元素都为列表,表示各图像的预测结果。在各图像的预测结果列表中,每个预测结果由预测框类别标签、预测框类别名称、
- 预测框坐标(坐标格式为[xmin, ymin, w, h])、
- 原图大小的预测二值图(1表示预测框类别,0表示背景类)、
- 预测框得分组成。
- """
- if transforms is None and not hasattr(self, 'test_transforms'):
- raise Exception("transforms need to be defined, now is None.")
- if not isinstance(img_file_list, (list, tuple)):
- raise Exception("im_file must be list/tuple")
- if transforms is None:
- transforms = self.test_transforms
- im, im_resize_info, im_shape = FasterRCNN._preprocess(
- img_file_list, transforms, self.model_type,
- self.__class__.__name__, self.thread_pool)
- with fluid.scope_guard(self.scope):
- result = self.exe.run(self.test_prog,
- feed={
- 'image': im,
- 'im_info': im_resize_info,
- 'im_shape': im_shape
- },
- fetch_list=list(self.test_outputs.values()),
- return_numpy=False,
- use_program_cache=True)
- res = {
- k: (np.array(v), v.recursive_sequence_lengths())
- for k, v in zip(list(self.test_outputs.keys()), result)
- }
- res['im_id'] = (np.array(
- [[i] for i in range(len(img_file_list))]).astype('int32'), [])
- res['im_shape'] = (np.array(im_shape), [])
- preds = MaskRCNN._postprocess(res,
- len(img_file_list), self.num_classes,
- self.mask_head_resolution, self.labels)
- return preds
|