test_pp_chatocrv3.py 1.0 KB

12345678910111213141516171819202122232425262728293031323334353637
  1. from paddlex import create_pipeline
  2. pipeline = create_pipeline(pipeline="PP-ChatOCRv3-doc")
  3. # img_path = "./test_demo_imgs/vehicle_certificate-1.png"
  4. # key_list = ['驾驶室准乘人数']
  5. # img_path = "./test_demo_imgs/test_layout_parsing.jpg"
  6. # key_list = ['3.2的标题']
  7. img_path = "./test_demo_imgs/seal_text_det.png"
  8. key_list = ['印章上公司']
  9. # visual_predict_res = pipeline.visual_predict(img_path,
  10. # use_doc_orientation_classify=True,
  11. # use_doc_unwarping=True,
  12. # use_common_ocr=True,
  13. # use_seal_recognition=True,
  14. # use_table_recognition=True)
  15. # ####[TODO] 增加类别信息
  16. # visual_info_list = []
  17. # for res in visual_predict_res:
  18. # visual_info_list.append(res["visual_info"])
  19. # pipeline.save_visual_info_list(visual_info_list, "./res_visual_info/visual_info3.json")
  20. visual_info_list = pipeline.load_visual_info_list("./res_visual_info/visual_info3.json")
  21. vector_info = pipeline.build_vector(visual_info_list)
  22. print(vector_info)
  23. final_results = pipeline.chat(visual_info_list, key_list, vector_info)
  24. print(final_results)