| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from pathlib import Path
- from typing import Any, Dict, Optional
- from .base import BasePipeline
- from ...utils.config import parse_config
- # from .single_model_pipeline import (
- # _SingleModelPipeline,
- # ImageClassification,
- # ObjectDetection,
- # InstanceSegmentation,
- # SemanticSegmentation,
- # TSFc,
- # TSAd,
- # TSCls,
- # MultiLableImageClas,
- # SmallObjDet,
- # AnomalyDetection,
- # )
- # from .ocr import OCRPipeline
- # from .formula_recognition import FormulaRecognitionPipeline
- # from .table_recognition import TableRecPipeline
- # from .face_recognition import FaceRecPipeline
- # from .seal_recognition import SealOCRPipeline
- # from .ppchatocrv3 import PPChatOCRPipeline
- # from .layout_parsing import LayoutParsingPipeline
- # from .pp_shitu_v2 import ShiTuV2Pipeline
- # from .attribute_recognition import AttributeRecPipeline
- from .ocr import OCRPipeline
- from .doc_preprocessor import DocPreprocessorPipeline
- from .layout_parsing import LayoutParsingPipeline
- from .pp_chatocrv3_doc import PP_ChatOCRv3_doc_Pipeline
- def get_pipeline_path(pipeline_name):
- pipeline_path = (
- Path(__file__).parent.parent.parent / "configs/pipelines" / f"{pipeline_name}.yaml"
- ).resolve()
- if not Path(pipeline_path).exists():
- return None
- return pipeline_path
- def load_pipeline_config(pipeline_name: str) -> Dict[str, Any]:
- if not Path(pipeline_name).exists():
- pipeline_path = get_pipeline_path(pipeline_name)
- if pipeline_path is None:
- raise Exception(
- f"The pipeline ({pipeline_name}) does not exist! Please use a pipeline name or a config file path!"
- )
- else:
- pipeline_path = pipeline_name
- config = parse_config(pipeline_path)
- return config
- def create_pipeline(
- pipeline: str,
- device=None,
- pp_option=None,
- use_hpip: bool = False,
- hpi_params: Optional[Dict[str, Any]] = None,
- *args,
- **kwargs,
- ) -> BasePipeline:
- """build model evaluater
- Args:
- pipeline (str): the pipeline name, that is name of pipeline class
- Returns:
- BasePipeline: the pipeline, which is subclass of BasePipeline.
- """
- pipeline_name = pipeline
- config = load_pipeline_config(pipeline_name)
- assert pipeline_name == config["pipeline_name"]
- pipeline = BasePipeline.get(pipeline_name)(
- config=config,
- device=device,
- pp_option=pp_option,
- use_hpip=use_hpip,
- hpi_params=hpi_params)
- return pipeline
-
|