| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os, sys
- import numpy as np
- from numpy import cos, sin, arctan, sqrt
- import cv2
- import copy
- import time
- from .....utils import logging
- def Homography(
- image,
- img_points,
- world_width,
- world_height,
- interpolation=cv2.INTER_CUBIC,
- ratio_width=1.0,
- ratio_height=1.0,
- ):
- _points = np.array(img_points).reshape(-1, 2).astype(np.float32)
- expand_x = int(0.5 * world_width * (ratio_width - 1))
- expand_y = int(0.5 * world_height * (ratio_height - 1))
- pt_lefttop = [expand_x, expand_y]
- pt_righttop = [expand_x + world_width, expand_y]
- pt_leftbottom = [expand_x + world_width, expand_y + world_height]
- pt_rightbottom = [expand_x, expand_y + world_height]
- pts_std = np.float32([pt_lefttop, pt_righttop, pt_leftbottom, pt_rightbottom])
- img_crop_width = int(world_width * ratio_width)
- img_crop_height = int(world_height * ratio_height)
- M = cv2.getPerspectiveTransform(_points, pts_std)
- dst_img = cv2.warpPerspective(
- image,
- M,
- (img_crop_width, img_crop_height),
- borderMode=cv2.BORDER_CONSTANT, # BORDER_CONSTANT BORDER_REPLICATE
- flags=interpolation,
- )
- return dst_img
- class PlanB:
- def __call__(
- self,
- image,
- points,
- curveTextRectifier,
- interpolation=cv2.INTER_LINEAR,
- ratio_width=1.0,
- ratio_height=1.0,
- loss_thresh=5.0,
- square=False,
- ):
- """
- Plan B using sub-image when it failed in original image
- :param image:
- :param points:
- :param curveTextRectifier: CurveTextRectifier
- :param interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
- :param ratio_width: roi_image width expansion. It should not be smaller than 1.0
- :param ratio_height: roi_image height expansion. It should not be smaller than 1.0
- :param loss_thresh: if loss greater than loss_thresh --> get_rotate_crop_image
- :param square: crop square image or not. True or False. The default is False
- :return:
- """
- h, w = image.shape[:2]
- _points = np.array(points).reshape(-1, 2).astype(np.float32)
- x_min = int(np.min(_points[:, 0]))
- y_min = int(np.min(_points[:, 1]))
- x_max = int(np.max(_points[:, 0]))
- y_max = int(np.max(_points[:, 1]))
- dx = x_max - x_min
- dy = y_max - y_min
- max_d = max(dx, dy)
- mean_pt = np.mean(_points, 0)
- expand_x = (ratio_width - 1.0) * 0.5 * max_d
- expand_y = (ratio_height - 1.0) * 0.5 * max_d
- if square:
- x_min = np.clip(int(mean_pt[0] - max_d - expand_x), 0, w - 1)
- y_min = np.clip(int(mean_pt[1] - max_d - expand_y), 0, h - 1)
- x_max = np.clip(int(mean_pt[0] + max_d + expand_x), 0, w - 1)
- y_max = np.clip(int(mean_pt[1] + max_d + expand_y), 0, h - 1)
- else:
- x_min = np.clip(int(x_min - expand_x), 0, w - 1)
- y_min = np.clip(int(y_min - expand_y), 0, h - 1)
- x_max = np.clip(int(x_max + expand_x), 0, w - 1)
- y_max = np.clip(int(y_max + expand_y), 0, h - 1)
- new_image = image[y_min:y_max, x_min:x_max, :].copy()
- new_points = _points.copy()
- new_points[:, 0] -= x_min
- new_points[:, 1] -= y_min
- dst_img, loss = curveTextRectifier(
- new_image,
- new_points,
- interpolation,
- ratio_width,
- ratio_height,
- mode="calibration",
- )
- return dst_img, loss
- class CurveTextRectifier:
- """
- spatial transformer via monocular vision
- """
- def __init__(self):
- self.get_virtual_camera_parameter()
- def get_virtual_camera_parameter(self):
- vcam_thz = 0
- vcam_thx1 = 180
- vcam_thy = 180
- vcam_thx2 = 0
- vcam_x = 0
- vcam_y = 0
- vcam_z = 100
- radian = np.pi / 180
- angle_z = radian * vcam_thz
- angle_x1 = radian * vcam_thx1
- angle_y = radian * vcam_thy
- angle_x2 = radian * vcam_thx2
- optic_x = vcam_x
- optic_y = vcam_y
- optic_z = vcam_z
- fu = 100
- fv = 100
- matT = np.zeros((4, 4))
- matT[0, 0] = cos(angle_z) * cos(angle_y) - sin(angle_z) * sin(angle_x1) * sin(
- angle_y
- )
- matT[0, 1] = cos(angle_z) * sin(angle_y) * sin(angle_x2) - sin(angle_z) * (
- cos(angle_x1) * cos(angle_x2) - sin(angle_x1) * cos(angle_y) * sin(angle_x2)
- )
- matT[0, 2] = cos(angle_z) * sin(angle_y) * cos(angle_x2) + sin(angle_z) * (
- cos(angle_x1) * sin(angle_x2) + sin(angle_x1) * cos(angle_y) * cos(angle_x2)
- )
- matT[0, 3] = optic_x
- matT[1, 0] = sin(angle_z) * cos(angle_y) + cos(angle_z) * sin(angle_x1) * sin(
- angle_y
- )
- matT[1, 1] = sin(angle_z) * sin(angle_y) * sin(angle_x2) + cos(angle_z) * (
- cos(angle_x1) * cos(angle_x2) - sin(angle_x1) * cos(angle_y) * sin(angle_x2)
- )
- matT[1, 2] = sin(angle_z) * sin(angle_y) * cos(angle_x2) - cos(angle_z) * (
- cos(angle_x1) * sin(angle_x2) + sin(angle_x1) * cos(angle_y) * cos(angle_x2)
- )
- matT[1, 3] = optic_y
- matT[2, 0] = -cos(angle_x1) * sin(angle_y)
- matT[2, 1] = cos(angle_x1) * cos(angle_y) * sin(angle_x2) + sin(angle_x1) * cos(
- angle_x2
- )
- matT[2, 2] = cos(angle_x1) * cos(angle_y) * cos(angle_x2) - sin(angle_x1) * sin(
- angle_x2
- )
- matT[2, 3] = optic_z
- matT[3, 0] = 0
- matT[3, 1] = 0
- matT[3, 2] = 0
- matT[3, 3] = 1
- matS = np.zeros((4, 4))
- matS[2, 3] = 0.5
- matS[3, 2] = 0.5
- self.ifu = 1 / fu
- self.ifv = 1 / fv
- self.matT = matT
- self.matS = matS
- self.K = np.dot(matT.T, matS)
- self.K = np.dot(self.K, matT)
- def vertical_text_process(self, points, org_size):
- """
- change sequence amd process
- :param points:
- :param org_size:
- :return:
- """
- org_w, org_h = org_size
- _points = np.array(points).reshape(-1).tolist()
- _points = np.array(_points[2:] + _points[:2]).reshape(-1, 2)
- # convert to horizontal points
- adjusted_points = np.zeros(_points.shape, dtype=np.float32)
- adjusted_points[:, 0] = _points[:, 1]
- adjusted_points[:, 1] = org_h - _points[:, 0] - 1
- _image_coord, _world_coord, _new_image_size = self.horizontal_text_process(
- adjusted_points
- )
- # # convert to vertical points back
- image_coord = _points.reshape(1, -1, 2)
- world_coord = np.zeros(_world_coord.shape, dtype=np.float32)
- world_coord[:, :, 0] = 0 - _world_coord[:, :, 1]
- world_coord[:, :, 1] = _world_coord[:, :, 0]
- world_coord[:, :, 2] = _world_coord[:, :, 2]
- new_image_size = (_new_image_size[1], _new_image_size[0])
- return image_coord, world_coord, new_image_size
- def horizontal_text_process(self, points):
- """
- get image coordinate and world coordinate
- :param points:
- :return:
- """
- poly = np.array(points).reshape(-1)
- dx_list = []
- dy_list = []
- for i in range(1, len(poly) // 2):
- xdx = poly[i * 2] - poly[(i - 1) * 2]
- xdy = poly[i * 2 + 1] - poly[(i - 1) * 2 + 1]
- d = sqrt(xdx**2 + xdy**2)
- dx_list.append(d)
- for i in range(0, len(poly) // 4):
- ydx = poly[i * 2] - poly[len(poly) - 1 - (i * 2 + 1)]
- ydy = poly[i * 2 + 1] - poly[len(poly) - 1 - (i * 2)]
- d = sqrt(ydx**2 + ydy**2)
- dy_list.append(d)
- dx_list = [
- (dx_list[i] + dx_list[len(dx_list) - 1 - i]) / 2
- for i in range(len(dx_list) // 2)
- ]
- height = np.around(np.mean(dy_list))
- rect_coord = [0, 0]
- for i in range(0, len(poly) // 4 - 1):
- x = rect_coord[-2]
- x += dx_list[i]
- y = 0
- rect_coord.append(x)
- rect_coord.append(y)
- rect_coord_half = copy.deepcopy(rect_coord)
- for i in range(0, len(poly) // 4):
- x = rect_coord_half[len(rect_coord_half) - 2 * i - 2]
- y = height
- rect_coord.append(x)
- rect_coord.append(y)
- np_rect_coord = np.array(rect_coord).reshape(-1, 2)
- x_min = np.min(np_rect_coord[:, 0])
- y_min = np.min(np_rect_coord[:, 1])
- x_max = np.max(np_rect_coord[:, 0])
- y_max = np.max(np_rect_coord[:, 1])
- new_image_size = (int(x_max - x_min + 0.5), int(y_max - y_min + 0.5))
- x_mean = (x_max - x_min) / 2
- y_mean = (y_max - y_min) / 2
- np_rect_coord[:, 0] -= x_mean
- np_rect_coord[:, 1] -= y_mean
- rect_coord = np_rect_coord.reshape(-1).tolist()
- rect_coord = np.array(rect_coord).reshape(-1, 2)
- world_coord = np.ones((len(rect_coord), 3)) * 0
- world_coord[:, :2] = rect_coord
- image_coord = np.array(poly).reshape(1, -1, 2)
- world_coord = world_coord.reshape(1, -1, 3)
- return image_coord, world_coord, new_image_size
- def horizontal_text_estimate(self, points):
- """
- horizontal or vertical text
- :param points:
- :return:
- """
- pts = np.array(points).reshape(-1, 2)
- x_min = int(np.min(pts[:, 0]))
- y_min = int(np.min(pts[:, 1]))
- x_max = int(np.max(pts[:, 0]))
- y_max = int(np.max(pts[:, 1]))
- x = x_max - x_min
- y = y_max - y_min
- is_horizontal_text = True
- if y / x > 1.5: # vertical text condition
- is_horizontal_text = False
- return is_horizontal_text
- def virtual_camera_to_world(self, size):
- ifu, ifv = self.ifu, self.ifv
- K, matT = self.K, self.matT
- ppu = size[0] / 2 + 1e-6
- ppv = size[1] / 2 + 1e-6
- P = np.zeros((size[1], size[0], 3))
- lu = np.array([i for i in range(size[0])])
- lv = np.array([i for i in range(size[1])])
- u, v = np.meshgrid(lu, lv)
- yp = (v - ppv) * ifv
- xp = (u - ppu) * ifu
- angle_a = arctan(sqrt(xp * xp + yp * yp))
- angle_b = arctan(yp / xp)
- D0 = sin(angle_a) * cos(angle_b)
- D1 = sin(angle_a) * sin(angle_b)
- D2 = cos(angle_a)
- D0[xp <= 0] = -D0[xp <= 0]
- D1[xp <= 0] = -D1[xp <= 0]
- ratio_a = (
- K[0, 0] * D0 * D0
- + K[1, 1] * D1 * D1
- + K[2, 2] * D2 * D2
- + (K[0, 1] + K[1, 0]) * D0 * D1
- + (K[0, 2] + K[2, 0]) * D0 * D2
- + (K[1, 2] + K[2, 1]) * D1 * D2
- )
- ratio_b = (
- (K[0, 3] + K[3, 0]) * D0
- + (K[1, 3] + K[3, 1]) * D1
- + (K[2, 3] + K[3, 2]) * D2
- )
- ratio_c = K[3, 3] * np.ones(ratio_b.shape)
- delta = ratio_b * ratio_b - 4 * ratio_a * ratio_c
- t = np.zeros(delta.shape)
- t[ratio_a == 0] = -ratio_c[ratio_a == 0] / ratio_b[ratio_a == 0]
- t[ratio_a != 0] = (-ratio_b[ratio_a != 0] + sqrt(delta[ratio_a != 0])) / (
- 2 * ratio_a[ratio_a != 0]
- )
- t[delta < 0] = 0
- P[:, :, 0] = matT[0, 3] + t * (
- matT[0, 0] * D0 + matT[0, 1] * D1 + matT[0, 2] * D2
- )
- P[:, :, 1] = matT[1, 3] + t * (
- matT[1, 0] * D0 + matT[1, 1] * D1 + matT[1, 2] * D2
- )
- P[:, :, 2] = matT[2, 3] + t * (
- matT[2, 0] * D0 + matT[2, 1] * D1 + matT[2, 2] * D2
- )
- return P
- def world_to_image(self, image_size, world, intrinsic, distCoeffs, rotation, tvec):
- r11 = rotation[0, 0]
- r12 = rotation[0, 1]
- r13 = rotation[0, 2]
- r21 = rotation[1, 0]
- r22 = rotation[1, 1]
- r23 = rotation[1, 2]
- r31 = rotation[2, 0]
- r32 = rotation[2, 1]
- r33 = rotation[2, 2]
- t1 = tvec[0]
- t2 = tvec[1]
- t3 = tvec[2]
- k1 = distCoeffs[0]
- k2 = distCoeffs[1]
- p1 = distCoeffs[2]
- p2 = distCoeffs[3]
- k3 = distCoeffs[4]
- k4 = distCoeffs[5]
- k5 = distCoeffs[6]
- k6 = distCoeffs[7]
- if len(distCoeffs) > 8:
- s1 = distCoeffs[8]
- s2 = distCoeffs[9]
- s3 = distCoeffs[10]
- s4 = distCoeffs[11]
- else:
- s1 = s2 = s3 = s4 = 0
- if len(distCoeffs) > 12:
- tx = distCoeffs[12]
- ty = distCoeffs[13]
- else:
- tx = ty = 0
- fu = intrinsic[0, 0]
- fv = intrinsic[1, 1]
- ppu = intrinsic[0, 2]
- ppv = intrinsic[1, 2]
- cos_tx = cos(tx)
- cos_ty = cos(ty)
- sin_tx = sin(tx)
- sin_ty = sin(ty)
- tao11 = cos_ty * cos_tx * cos_ty + sin_ty * cos_tx * sin_ty
- tao12 = cos_ty * cos_tx * sin_ty * sin_tx - sin_ty * cos_tx * cos_ty * sin_tx
- tao13 = -cos_ty * cos_tx * sin_ty * cos_tx + sin_ty * cos_tx * cos_ty * cos_tx
- tao21 = -sin_tx * sin_ty
- tao22 = cos_ty * cos_tx * cos_tx + sin_tx * cos_ty * sin_tx
- tao23 = cos_ty * cos_tx * sin_tx - sin_tx * cos_ty * cos_tx
- P = np.zeros((image_size[1], image_size[0], 2))
- c3 = r31 * world[:, :, 0] + r32 * world[:, :, 1] + r33 * world[:, :, 2] + t3
- c1 = r11 * world[:, :, 0] + r12 * world[:, :, 1] + r13 * world[:, :, 2] + t1
- c2 = r21 * world[:, :, 0] + r22 * world[:, :, 1] + r23 * world[:, :, 2] + t2
- x1 = c1 / c3
- y1 = c2 / c3
- x12 = x1 * x1
- y12 = y1 * y1
- x1y1 = 2 * x1 * y1
- r2 = x12 + y12
- r4 = r2 * r2
- r6 = r2 * r4
- radial_distortion = (1 + k1 * r2 + k2 * r4 + k3 * r6) / (
- 1 + k4 * r2 + k5 * r4 + k6 * r6
- )
- x2 = (
- x1 * radial_distortion + p1 * x1y1 + p2 * (r2 + 2 * x12) + s1 * r2 + s2 * r4
- )
- y2 = (
- y1 * radial_distortion + p2 * x1y1 + p1 * (r2 + 2 * y12) + s3 * r2 + s4 * r4
- )
- x3 = tao11 * x2 + tao12 * y2 + tao13
- y3 = tao21 * x2 + tao22 * y2 + tao23
- P[:, :, 0] = fu * x3 + ppu
- P[:, :, 1] = fv * y3 + ppv
- P[c3 <= 0] = 0
- return P
- def spatial_transform(
- self, image_data, new_image_size, mtx, dist, rvecs, tvecs, interpolation
- ):
- rotation, _ = cv2.Rodrigues(rvecs)
- world_map = self.virtual_camera_to_world(new_image_size)
- image_map = self.world_to_image(
- new_image_size, world_map, mtx, dist, rotation, tvecs
- )
- image_map = image_map.astype(np.float32)
- dst = cv2.remap(
- image_data, image_map[:, :, 0], image_map[:, :, 1], interpolation
- )
- return dst
- def calibrate(self, org_size, image_coord, world_coord):
- """
- calibration
- :param org_size:
- :param image_coord:
- :param world_coord:
- :return:
- """
- # flag = cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_TILTED_MODEL | cv2.CALIB_THIN_PRISM_MODEL
- flag = cv2.CALIB_RATIONAL_MODEL
- flag2 = cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_TILTED_MODEL
- flag3 = cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_THIN_PRISM_MODEL
- flag4 = (
- cv2.CALIB_RATIONAL_MODEL
- | cv2.CALIB_ZERO_TANGENT_DIST
- | cv2.CALIB_FIX_ASPECT_RATIO
- )
- flag5 = (
- cv2.CALIB_RATIONAL_MODEL
- | cv2.CALIB_TILTED_MODEL
- | cv2.CALIB_ZERO_TANGENT_DIST
- )
- flag6 = cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_FIX_ASPECT_RATIO
- flag_list = [flag2, flag3, flag4, flag5, flag6]
- ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
- world_coord.astype(np.float32),
- image_coord.astype(np.float32),
- org_size,
- None,
- None,
- flags=flag,
- )
- if ret > 2:
- # strategies
- min_ret = ret
- for i, flag in enumerate(flag_list):
- _ret, _mtx, _dist, _rvecs, _tvecs = cv2.calibrateCamera(
- world_coord.astype(np.float32),
- image_coord.astype(np.float32),
- org_size,
- None,
- None,
- flags=flag,
- )
- if _ret < min_ret:
- min_ret = _ret
- ret, mtx, dist, rvecs, tvecs = _ret, _mtx, _dist, _rvecs, _tvecs
- return ret, mtx, dist, rvecs, tvecs
- def dc_homo(
- self,
- img,
- img_points,
- obj_points,
- is_horizontal_text,
- interpolation=cv2.INTER_LINEAR,
- ratio_width=1.0,
- ratio_height=1.0,
- ):
- """
- divide and conquer: homography
- # ratio_width and ratio_height must be 1.0 here
- """
- _img_points = img_points.reshape(-1, 2)
- _obj_points = obj_points.reshape(-1, 3)
- homo_img_list = []
- width_list = []
- height_list = []
- # divide and conquer
- for i in range(len(_img_points) // 2 - 1):
- new_img_points = np.zeros((4, 2)).astype(np.float32)
- new_obj_points = np.zeros((4, 2)).astype(np.float32)
- new_img_points[0:2, :] = _img_points[i : (i + 2), :2]
- new_img_points[2:4, :] = _img_points[::-1, :][i : (i + 2), :2][::-1, :]
- new_obj_points[0:2, :] = _obj_points[i : (i + 2), :2]
- new_obj_points[2:4, :] = _obj_points[::-1, :][i : (i + 2), :2][::-1, :]
- if is_horizontal_text:
- world_width = np.abs(new_obj_points[1, 0] - new_obj_points[0, 0])
- world_height = np.abs(new_obj_points[3, 1] - new_obj_points[0, 1])
- else:
- world_width = np.abs(new_obj_points[1, 1] - new_obj_points[0, 1])
- world_height = np.abs(new_obj_points[3, 0] - new_obj_points[0, 0])
- homo_img = Homography(
- img,
- new_img_points,
- world_width,
- world_height,
- interpolation=interpolation,
- ratio_width=ratio_width,
- ratio_height=ratio_height,
- )
- homo_img_list.append(homo_img)
- _h, _w = homo_img.shape[:2]
- width_list.append(_w)
- height_list.append(_h)
- # stitching
- rectified_image = np.zeros((np.max(height_list), sum(width_list), 3)).astype(
- np.uint8
- )
- st = 0
- for homo_img, w, h in zip(homo_img_list, width_list, height_list):
- rectified_image[:h, st : st + w, :] = homo_img
- st += w
- if not is_horizontal_text:
- # vertical rotation
- rectified_image = np.rot90(rectified_image, 3)
- return rectified_image
- def Homography(
- self,
- image,
- img_points,
- world_width,
- world_height,
- interpolation=cv2.INTER_CUBIC,
- ratio_width=1.0,
- ratio_height=1.0,
- ):
- _points = np.array(img_points).reshape(-1, 2).astype(np.float32)
- expand_x = int(0.5 * world_width * (ratio_width - 1))
- expand_y = int(0.5 * world_height * (ratio_height - 1))
- pt_lefttop = [expand_x, expand_y]
- pt_righttop = [expand_x + world_width, expand_y]
- pt_leftbottom = [expand_x + world_width, expand_y + world_height]
- pt_rightbottom = [expand_x, expand_y + world_height]
- pts_std = np.float32([pt_lefttop, pt_righttop, pt_leftbottom, pt_rightbottom])
- img_crop_width = int(world_width * ratio_width)
- img_crop_height = int(world_height * ratio_height)
- M = cv2.getPerspectiveTransform(_points, pts_std)
- dst_img = cv2.warpPerspective(
- image,
- M,
- (img_crop_width, img_crop_height),
- borderMode=cv2.BORDER_CONSTANT, # BORDER_CONSTANT BORDER_REPLICATE
- flags=interpolation,
- )
- return dst_img
- def __call__(
- self,
- image_data,
- points,
- interpolation=cv2.INTER_LINEAR,
- ratio_width=1.0,
- ratio_height=1.0,
- mode="calibration",
- ):
- """
- spatial transform for a poly text
- :param image_data:
- :param points: [x1,y1,x2,y2,x3,y3,...], clockwise order, (x1,y1) must be the top-left of first char.
- :param interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
- :param ratio_width: roi_image width expansion. It should not be smaller than 1.0
- :param ratio_height: roi_image height expansion. It should not be smaller than 1.0
- :param mode: 'calibration' or 'homography'. when homography, ratio_width and ratio_height must be 1.0
- :return:
- """
- org_h, org_w = image_data.shape[:2]
- org_size = (org_w, org_h)
- self.image = image_data
- is_horizontal_text = self.horizontal_text_estimate(points)
- if is_horizontal_text:
- image_coord, world_coord, new_image_size = self.horizontal_text_process(
- points
- )
- else:
- image_coord, world_coord, new_image_size = self.vertical_text_process(
- points, org_size
- )
- if mode.lower() == "calibration":
- ret, mtx, dist, rvecs, tvecs = self.calibrate(
- org_size, image_coord, world_coord
- )
- st_size = (
- int(new_image_size[0] * ratio_width),
- int(new_image_size[1] * ratio_height),
- )
- dst = self.spatial_transform(
- image_data, st_size, mtx, dist[0], rvecs[0], tvecs[0], interpolation
- )
- elif mode.lower() == "homography":
- # ratio_width and ratio_height must be 1.0 here and ret set to 0.01 without loss manually
- ret = 0.01
- dst = self.dc_homo(
- image_data,
- image_coord,
- world_coord,
- is_horizontal_text,
- interpolation=interpolation,
- ratio_width=1.0,
- ratio_height=1.0,
- )
- else:
- raise ValueError(
- 'mode must be ["calibration", "homography"], but got {}'.format(mode)
- )
- return dst, ret
- class AutoRectifier:
- def __init__(self):
- self.npoints = 10
- self.curveTextRectifier = CurveTextRectifier()
- @staticmethod
- def get_rotate_crop_image(
- img, points, interpolation=cv2.INTER_CUBIC, ratio_width=1.0, ratio_height=1.0
- ):
- """
- crop or homography
- :param img:
- :param points:
- :param interpolation:
- :param ratio_width:
- :param ratio_height:
- :return:
- """
- h, w = img.shape[:2]
- _points = np.array(points).reshape(-1, 2).astype(np.float32)
- if len(_points) != 4:
- x_min = int(np.min(_points[:, 0]))
- y_min = int(np.min(_points[:, 1]))
- x_max = int(np.max(_points[:, 0]))
- y_max = int(np.max(_points[:, 1]))
- dx = x_max - x_min
- dy = y_max - y_min
- expand_x = int(0.5 * dx * (ratio_width - 1))
- expand_y = int(0.5 * dy * (ratio_height - 1))
- x_min = np.clip(int(x_min - expand_x), 0, w - 1)
- y_min = np.clip(int(y_min - expand_y), 0, h - 1)
- x_max = np.clip(int(x_max + expand_x), 0, w - 1)
- y_max = np.clip(int(y_max + expand_y), 0, h - 1)
- dst_img = img[y_min:y_max, x_min:x_max, :].copy()
- else:
- img_crop_width = int(
- max(
- np.linalg.norm(_points[0] - _points[1]),
- np.linalg.norm(_points[2] - _points[3]),
- )
- )
- img_crop_height = int(
- max(
- np.linalg.norm(_points[0] - _points[3]),
- np.linalg.norm(_points[1] - _points[2]),
- )
- )
- dst_img = Homography(
- img,
- _points,
- img_crop_width,
- img_crop_height,
- interpolation,
- ratio_width,
- ratio_height,
- )
- return dst_img
- def visualize(self, image_data, points_list):
- visualization = image_data.copy()
- for box in points_list:
- box = np.array(box).reshape(-1, 2).astype(np.int32)
- cv2.drawContours(
- visualization, [np.array(box).reshape((-1, 1, 2))], -1, (0, 0, 255), 2
- )
- for i, p in enumerate(box):
- if i != 0:
- cv2.circle(
- visualization,
- tuple(p),
- radius=1,
- color=(255, 0, 0),
- thickness=2,
- )
- else:
- cv2.circle(
- visualization,
- tuple(p),
- radius=1,
- color=(255, 255, 0),
- thickness=2,
- )
- return visualization
- def __call__(
- self,
- image_data,
- points,
- interpolation=cv2.INTER_LINEAR,
- ratio_width=1.0,
- ratio_height=1.0,
- loss_thresh=5.0,
- mode="calibration",
- ):
- """
- rectification in strategies for a poly text
- :param image_data:
- :param points: [x1,y1,x2,y2,x3,y3,...], clockwise order, (x1,y1) must be the top-left of first char.
- :param interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
- :param ratio_width: roi_image width expansion. It should not be smaller than 1.0
- :param ratio_height: roi_image height expansion. It should not be smaller than 1.0
- :param loss_thresh: if loss greater than loss_thresh --> get_rotate_crop_image
- :param mode: 'calibration' or 'homography'. when homography, ratio_width and ratio_height must be 1.0
- :return:
- """
- _points = np.array(points).reshape(-1, 2)
- if len(_points) >= self.npoints and len(_points) % 2 == 0:
- try:
- curveTextRectifier = CurveTextRectifier()
- dst_img, loss = curveTextRectifier(
- image_data, points, interpolation, ratio_width, ratio_height, mode
- )
- if loss >= 2:
- # for robust
- # large loss means it cannot be reconstruct correctly, we must find other way to reconstruct
- img_list, loss_list = [dst_img], [loss]
- _dst_img, _loss = PlanB()(
- image_data,
- points,
- curveTextRectifier,
- interpolation,
- ratio_width,
- ratio_height,
- loss_thresh=loss_thresh,
- square=True,
- )
- img_list += [_dst_img]
- loss_list += [_loss]
- _dst_img, _loss = PlanB()(
- image_data,
- points,
- curveTextRectifier,
- interpolation,
- ratio_width,
- ratio_height,
- loss_thresh=loss_thresh,
- square=False,
- )
- img_list += [_dst_img]
- loss_list += [_loss]
- min_loss = min(loss_list)
- dst_img = img_list[loss_list.index(min_loss)]
- if min_loss >= loss_thresh:
- logging.warning(
- "calibration loss: {} is too large for spatial transformer. It is failed. Using get_rotate_crop_image".format(
- loss
- )
- )
- dst_img = self.get_rotate_crop_image(
- image_data, points, interpolation, ratio_width, ratio_height
- )
- except Exception as e:
- logging.warning(f"Exception caught: {e}")
- dst_img = self.get_rotate_crop_image(
- image_data, points, interpolation, ratio_width, ratio_height
- )
- else:
- dst_img = self.get_rotate_crop_image(
- image_data, _points, interpolation, ratio_width, ratio_height
- )
- return dst_img
- def run(
- self,
- image_data,
- points_list,
- interpolation=cv2.INTER_LINEAR,
- ratio_width=1.0,
- ratio_height=1.0,
- loss_thresh=5.0,
- mode="calibration",
- ):
- """
- run for texts in an image
- :param image_data: numpy.ndarray. The shape is [h, w, 3]
- :param points_list: [[x1,y1,x2,y2,x3,y3,...], [x1,y1,x2,y2,x3,y3,...], ...], clockwise order, (x1,y1) must be the top-left of first char.
- :param interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
- :param ratio_width: roi_image width expansion. It should not be smaller than 1.0
- :param ratio_height: roi_image height expansion. It should not be smaller than 1.0
- :param loss_thresh: if loss greater than loss_thresh --> get_rotate_crop_image
- :param mode: 'calibration' or 'homography'. when homography, ratio_width and ratio_height must be 1.0
- :return: res: roi-image list, visualized_image: draw polys in original image
- """
- if image_data is None:
- raise ValueError
- if not isinstance(points_list, list):
- raise ValueError
- for points in points_list:
- if not isinstance(points, list):
- raise ValueError
- if ratio_width < 1.0 or ratio_height < 1.0:
- raise ValueError(
- "ratio_width and ratio_height cannot be smaller than 1, but got {}",
- (ratio_width, ratio_height),
- )
- if mode.lower() != "calibration" and mode.lower() != "homography":
- raise ValueError(
- 'mode must be ["calibration", "homography"], but got {}'.format(mode)
- )
- if mode.lower() == "homography" and ratio_width != 1.0 and ratio_height != 1.0:
- raise ValueError(
- "ratio_width and ratio_height must be 1.0 when mode is homography, but got mode:{}, ratio:({},{})".format(
- mode, ratio_width, ratio_height
- )
- )
- res = []
- for points in points_list:
- rectified_img = self(
- image_data,
- points,
- interpolation,
- ratio_width,
- ratio_height,
- loss_thresh=loss_thresh,
- mode=mode,
- )
- res.append(rectified_img)
- # visualize
- visualized_image = self.visualize(image_data, points_list)
- return res, visualized_image
|