ocr.py 3.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from ..components import SortBoxes, CropByPolys
  15. from ..results import OCRResult
  16. from .base import BasePipeline
  17. from ...utils import logging
  18. class OCRPipeline(BasePipeline):
  19. """OCR Pipeline"""
  20. entities = "OCR"
  21. def __init__(
  22. self,
  23. text_det_model,
  24. text_rec_model,
  25. text_det_batch_size=1,
  26. text_rec_batch_size=1,
  27. predictor_kwargs=None,
  28. ):
  29. super().__init__(predictor_kwargs=predictor_kwargs)
  30. self._build_predictor(text_det_model, text_rec_model)
  31. self.set_predictor(text_det_batch_size, text_rec_batch_size)
  32. def _build_predictor(self, text_det_model, text_rec_model):
  33. self.text_det_model = self._create_model(text_det_model)
  34. self.text_rec_model = self._create_model(text_rec_model)
  35. self.is_curve = self.text_det_model.model_name in [
  36. "PP-OCRv4_mobile_seal_det",
  37. "PP-OCRv4_server_seal_det",
  38. ]
  39. self._sort_boxes = SortBoxes()
  40. self._crop_by_polys = CropByPolys(
  41. det_box_type="poly" if self.is_curve else "quad"
  42. )
  43. def set_predictor(self, text_det_batch_size=None, text_rec_batch_size=None):
  44. if text_det_batch_size and text_det_batch_size > 1:
  45. logging.warning(
  46. f"text det model only support batch_size=1 now,the setting of text_det_batch_size={text_det_batch_size} will not using! "
  47. )
  48. if text_rec_batch_size:
  49. self.text_rec_model.set_predictor(batch_size=text_rec_batch_size)
  50. def predict(self, input, **kwargs):
  51. device = kwargs.get("device", None)
  52. for det_res in self.text_det_model(
  53. input, batch_size=kwargs.get("det_batch_size", 1), device=device
  54. ):
  55. single_img_res = (
  56. det_res if self.is_curve else next(self._sort_boxes(det_res))
  57. )
  58. single_img_res["rec_text"] = []
  59. single_img_res["rec_score"] = []
  60. if len(single_img_res["dt_polys"]) > 0:
  61. all_subs_of_img = list(self._crop_by_polys(single_img_res))
  62. for rec_res in self.text_rec_model(
  63. all_subs_of_img,
  64. batch_size=kwargs.get("rec_batch_size", 1),
  65. device=device,
  66. ):
  67. single_img_res["rec_text"].append(rec_res["rec_text"])
  68. single_img_res["rec_score"].append(rec_res["rec_score"])
  69. yield OCRResult(single_img_res)