| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from .... import UltraInferModel, ModelFormat
- from .... import c_lib_wrap as C
- class ResNet(UltraInferModel):
- def __init__(
- self,
- model_file,
- params_file="",
- runtime_option=None,
- model_format=ModelFormat.ONNX,
- ):
- """Load a image classification model exported by torchvision.ResNet.
- :param model_file: (str)Path of model file, e.g resnet/resnet50.onnx
- :param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
- :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
- :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model, default is ONNX
- """
- # call super() to initialize the backend_option
- # the result of initialization will be saved in self._runtime_option
- super(ResNet, self).__init__(runtime_option)
- self._model = C.vision.classification.ResNet(
- model_file, params_file, self._runtime_option, model_format
- )
- # self.initialized shows the initialization of the model is successful or not
- assert self.initialized, "ResNet initialize failed."
- # Predict and return the inference result of "input_image".
- def predict(self, input_image, topk=1):
- """Classify an input image
- :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- :param topk: (int)The topk result by the classify confidence score, default 1
- :return: ClassifyResult
- """
- return self._model.predict(input_image, topk)
- # Implement the setter and getter method for variables
- @property
- def size(self):
- """
- Returns the preprocess image size, default size = [224, 224];
- """
- return self._model.size
- @property
- def mean_vals(self):
- """
- Returns the mean value of normalization, default mean_vals = [0.485f, 0.456f, 0.406f];
- """
- return self._model.mean_vals
- @property
- def std_vals(self):
- """
- Returns the std value of normalization, default std_vals = [0.229f, 0.224f, 0.225f];
- """
- return self._model.std_vals
- @size.setter
- def size(self, wh):
- assert isinstance(
- wh, (list, tuple)
- ), "The value to set `size` must be type of tuple or list."
- assert (
- len(wh) == 2
- ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
- len(wh)
- )
- self._model.size = wh
- @mean_vals.setter
- def mean_vals(self, value):
- assert isinstance(
- value, list
- ), "The value to set `mean_vals` must be type of list."
- self._model.mean_vals = value
- @std_vals.setter
- def std_vals(self, value):
- assert isinstance(
- value, list
- ), "The value to set `std_vals` must be type of list."
- self._model.std_vals = value
|