| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from abc import ABC, abstractmethod
- from ... import c_lib_wrap as C
- class ProcessorManager:
- def __init__(self):
- self._manager = None
- def run(self, input_ims):
- """Process input image
- :param: input_ims: (list of numpy.ndarray) The input images
- :return: list of FDTensor
- """
- return self._manager.run(input_ims)
- def use_cuda(self, enable_cv_cuda=False, gpu_id=-1):
- """Use CUDA processors
- :param: enable_cv_cuda: True: use CV-CUDA, False: use CUDA only
- :param: gpu_id: GPU device id
- """
- return self._manager.use_cuda(enable_cv_cuda, gpu_id)
- class PyProcessorManager(ABC):
- """
- PyProcessorManager is used to define a customized processor in python
- """
- def __init__(self):
- self._manager = C.vision.processors.ProcessorManager()
- def use_cuda(self, enable_cv_cuda=False, gpu_id=-1):
- """Use CUDA processors
- :param: enable_cv_cuda: True: use CV-CUDA, False: use CUDA only
- :param: gpu_id: GPU device id
- """
- return self._manager.use_cuda(enable_cv_cuda, gpu_id)
- def __call__(self, images):
- image_batch = C.vision.FDMatBatch()
- image_batch.from_mats(images)
- self._manager.pre_apply(image_batch)
- outputs = self.apply(image_batch)
- self._manager.post_apply()
- return outputs
- @abstractmethod
- def apply(self, image_batch):
- print("This function has to be implemented.")
- return []
|