modnet.py 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from .... import UltraInferModel, ModelFormat
  16. from .... import c_lib_wrap as C
  17. class MODNet(UltraInferModel):
  18. def __init__(
  19. self,
  20. model_file,
  21. params_file="",
  22. runtime_option=None,
  23. model_format=ModelFormat.ONNX,
  24. ):
  25. """Load a MODNet model exported by MODNet.
  26. :param model_file: (str)Path of model file, e.g ./modnet.onnx
  27. :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
  28. :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
  29. :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
  30. """
  31. # 调用基函数进行backend_option的初始化
  32. # 初始化后的option保存在self._runtime_option
  33. super(MODNet, self).__init__(runtime_option)
  34. self._model = C.vision.matting.MODNet(
  35. model_file, params_file, self._runtime_option, model_format
  36. )
  37. # 通过self.initialized判断整个模型的初始化是否成功
  38. assert self.initialized, "MODNet initialize failed."
  39. def predict(self, input_image):
  40. """Predict the matting result for an input image
  41. :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
  42. :return: MattingResult
  43. """
  44. return self._model.predict(input_image)
  45. # 一些跟模型有关的属性封装
  46. # 多数是预处理相关,可通过修改如model.size = [256, 256]改变预处理时resize的大小(前提是模型支持)
  47. @property
  48. def size(self):
  49. """
  50. Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [256,256]
  51. """
  52. return self._model.size
  53. @property
  54. def alpha(self):
  55. """
  56. Argument for image preprocessing step, alpha value for normalization, default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f}
  57. """
  58. return self._model.alpha
  59. @property
  60. def beta(self):
  61. """
  62. Argument for image preprocessing step, beta value for normalization, default beta = {-1.f, -1.f, -1.f}
  63. """
  64. return self._model.beta
  65. @property
  66. def swap_rb(self):
  67. """
  68. Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
  69. """
  70. return self._model.swap_rb
  71. @size.setter
  72. def size(self, wh):
  73. assert isinstance(
  74. wh, (list, tuple)
  75. ), "The value to set `size` must be type of tuple or list."
  76. assert (
  77. len(wh) == 2
  78. ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
  79. len(wh)
  80. )
  81. self._model.size = wh
  82. @alpha.setter
  83. def alpha(self, value):
  84. assert isinstance(
  85. value, (list, tuple)
  86. ), "The value to set `alpha` must be type of tuple or list."
  87. assert (
  88. len(value) == 3
  89. ), "The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
  90. len(value)
  91. )
  92. self._model.alpha = value
  93. @beta.setter
  94. def beta(self, value):
  95. assert isinstance(
  96. value, (list, tuple)
  97. ), "The value to set `beta` must be type of tuple or list."
  98. assert (
  99. len(value) == 3
  100. ), "The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
  101. len(value)
  102. )
  103. self._model.beta = value
  104. @swap_rb.setter
  105. def swap_rb(self, value):
  106. assert isinstance(
  107. value, bool
  108. ), "The value to set `swap_rb` must be type of bool."
  109. self._model.swap_rb = value