| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from .... import UltraInferModel, ModelFormat
- from .... import c_lib_wrap as C
- class MODNet(UltraInferModel):
- def __init__(
- self,
- model_file,
- params_file="",
- runtime_option=None,
- model_format=ModelFormat.ONNX,
- ):
- """Load a MODNet model exported by MODNet.
- :param model_file: (str)Path of model file, e.g ./modnet.onnx
- :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
- :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
- :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
- """
- # 调用基函数进行backend_option的初始化
- # 初始化后的option保存在self._runtime_option
- super(MODNet, self).__init__(runtime_option)
- self._model = C.vision.matting.MODNet(
- model_file, params_file, self._runtime_option, model_format
- )
- # 通过self.initialized判断整个模型的初始化是否成功
- assert self.initialized, "MODNet initialize failed."
- def predict(self, input_image):
- """Predict the matting result for an input image
- :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- :return: MattingResult
- """
- return self._model.predict(input_image)
- # 一些跟模型有关的属性封装
- # 多数是预处理相关,可通过修改如model.size = [256, 256]改变预处理时resize的大小(前提是模型支持)
- @property
- def size(self):
- """
- Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [256,256]
- """
- return self._model.size
- @property
- def alpha(self):
- """
- Argument for image preprocessing step, alpha value for normalization, default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f}
- """
- return self._model.alpha
- @property
- def beta(self):
- """
- Argument for image preprocessing step, beta value for normalization, default beta = {-1.f, -1.f, -1.f}
- """
- return self._model.beta
- @property
- def swap_rb(self):
- """
- Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
- """
- return self._model.swap_rb
- @size.setter
- def size(self, wh):
- assert isinstance(
- wh, (list, tuple)
- ), "The value to set `size` must be type of tuple or list."
- assert (
- len(wh) == 2
- ), "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
- len(wh)
- )
- self._model.size = wh
- @alpha.setter
- def alpha(self, value):
- assert isinstance(
- value, (list, tuple)
- ), "The value to set `alpha` must be type of tuple or list."
- assert (
- len(value) == 3
- ), "The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
- len(value)
- )
- self._model.alpha = value
- @beta.setter
- def beta(self, value):
- assert isinstance(
- value, (list, tuple)
- ), "The value to set `beta` must be type of tuple or list."
- assert (
- len(value) == 3
- ), "The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
- len(value)
- )
- self._model.beta = value
- @swap_rb.setter
- def swap_rb(self, value):
- assert isinstance(
- value, bool
- ), "The value to set `swap_rb` must be type of bool."
- self._model.swap_rb = value
|