| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
-
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- /*! @brief YOLOR model object used when to load a YOLOR model exported by YOLOR.
- */
- class ULTRAINFER_DECL YOLOR : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./yolor.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- YOLOR(const std::string &model_file, const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- virtual std::string ModelName() const { return "YOLOR"; }
- /** \brief Predict the detection result for an input image
- *
- * \param[in] im The input image data, comes from cv::imread()
- * \param[in] result The output detection result will be written to this
- * structure \param[in] conf_threshold confidence threashold for
- * postprocessing, default is 0.25 \param[in] nms_iou_threshold iou threashold
- * for NMS, default is 0.5 \return true if the prediction successed, otherwise
- * false
- */
- virtual bool Predict(cv::Mat *im, DetectionResult *result,
- float conf_threshold = 0.25,
- float nms_iou_threshold = 0.5);
- /*! @brief
- Argument for image preprocessing step, tuple of (width, height), decide the
- target size after resize, default size = {640, 640}
- */
- std::vector<int> size;
- // padding value, size should be the same as channels
- std::vector<float> padding_value;
- // only pad to the minimum rectangle which height and width is times of stride
- bool is_mini_pad;
- // while is_mini_pad = false and is_no_pad = true,
- // will resize the image to the set size
- bool is_no_pad;
- // if is_scale_up is false, the input image only can be zoom out,
- // the maximum resize scale cannot exceed 1.0
- bool is_scale_up;
- // padding stride, for is_mini_pad
- int stride;
- // for offsetting the boxes by classes when using NMS
- float max_wh;
- private:
- bool Initialize();
- bool Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info);
- bool Postprocess(FDTensor &infer_result, DetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold);
- void LetterBox(Mat *mat, const std::vector<int> &size,
- const std::vector<float> &color, bool _auto,
- bool scale_fill = false, bool scale_up = true,
- int stride = 32);
- // whether to inference with dynamic shape (e.g ONNX export with dynamic shape
- // or not.)
- // while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
- // value will
- // auto check by ultra_infer after the internal Runtime already initialized.
- bool is_dynamic_input_;
- };
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|