| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/detection/contrib/yolov5/postprocessor.h"
- #include "ultra_infer/vision/detection/contrib/yolov5/preprocessor.h"
- namespace ultra_infer {
- namespace vision {
- namespace detection {
- /*! @brief YOLOv5 model object used when to load a YOLOv5 model exported by
- * YOLOv5.
- */
- class ULTRAINFER_DECL YOLOv5 : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./yolov5.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- YOLOv5(const std::string &model_file, const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- std::string ModelName() const { return "yolov5"; }
- /** \brief DEPRECATED Predict the detection result for an input image, remove
- * at 1.0 version
- *
- * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
- * with layout HWC, BGR format \param[in] result The output detection result
- * will be written to this structure \param[in] conf_threshold confidence
- * threashold for postprocessing, default is 0.25 \param[in] nms_threshold iou
- * threshold for NMS, default is 0.5 \return true if the prediction
- * successed, otherwise false
- */
- virtual bool Predict(cv::Mat *im, DetectionResult *result,
- float conf_threshold = 0.25, float nms_threshold = 0.5);
- /** \brief Predict the detection result for an input image
- *
- * \param[in] img The input image data, comes from cv::imread(), is a 3-D
- * array with layout HWC, BGR format \param[in] result The output detection
- * result will be written to this structure \return true if the prediction
- * successed, otherwise false
- */
- virtual bool Predict(const cv::Mat &img, DetectionResult *result);
- /** \brief Predict the detection results for a batch of input images
- *
- * \param[in] imgs, The input image list, each element comes from cv::imread()
- * \param[in] results The output detection result list
- * \return true if the prediction successed, otherwise false
- */
- virtual bool BatchPredict(const std::vector<cv::Mat> &imgs,
- std::vector<DetectionResult> *results);
- /// Get preprocessor reference of YOLOv5
- virtual YOLOv5Preprocessor &GetPreprocessor() { return preprocessor_; }
- /// Get postprocessor reference of YOLOv5
- virtual YOLOv5Postprocessor &GetPostprocessor() { return postprocessor_; }
- protected:
- bool Initialize();
- YOLOv5Preprocessor preprocessor_;
- YOLOv5Postprocessor postprocessor_;
- };
- } // namespace detection
- } // namespace vision
- } // namespace ultra_infer
|