| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <glog/logging.h>
- #include <omp.h>
- #include <algorithm>
- #include <chrono> // NOLINT
- #include <iostream>
- #include <vector>
- #include <utility>
- #include <limits>
- #include <opencv2/opencv.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/core/core.hpp>
- #include "meter/global.h"
- #include "meter/readvalue.h"
- #include "include/paddlex/paddlex.h"
- #include "include/paddlex/visualize.h"
- using namespace std::chrono; // NOLINT
- DEFINE_string(det_model_dir, "", "Path of detection inference model");
- DEFINE_string(seg_model_dir, "", "Path of segmentation inference model");
- DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
- DEFINE_bool(use_trt, false, "Infering with TensorRT");
- DEFINE_bool(use_camera, false, "Infering with Camera");
- DEFINE_bool(use_erode, true, "Eroding predicted label map");
- DEFINE_int32(gpu_id, 0, "GPU card id");
- DEFINE_int32(camera_id, 0, "Camera id");
- DEFINE_int32(thread_num,
- omp_get_num_procs(),
- "Number of preprocessing threads");
- DEFINE_int32(erode_kernel, true, "Eroding kernel size");
- DEFINE_int32(seg_batch_size, 2, "Batch size of segmentation infering");
- DEFINE_string(det_key, "", "Detector key of encryption");
- DEFINE_string(seg_key, "", "Segmenter model key of encryption");
- DEFINE_string(image, "", "Path of test image file");
- DEFINE_string(image_list, "", "Path of test image list file");
- DEFINE_string(save_dir, "output", "Path to save visualized image");
- void predict(const cv::Mat &input_image, PaddleX::Model *det_model,
- PaddleX::Model *seg_model, const std::string save_dir,
- const std::string image_path, const bool use_erode,
- const int erode_kernel, const int thread_num,
- const int seg_batch_size) {
- PaddleX::DetResult det_result;
- det_model->predict(input_image, &det_result);
- int meter_num = det_result.boxes.size();
- if (!meter_num) {
- std::cout << "Don't find any meter." << std::endl;
- return;
- }
- std::vector<std::vector<int64_t>> seg_result(meter_num);
- for (int i = 0; i < meter_num; i += seg_batch_size) {
- int im_vec_size =
- std::min(static_cast<int>(meter_num), i + seg_batch_size);
- std::vector<cv::Mat> meters_image(im_vec_size - i);
- int batch_thread_num = std::min(thread_num, im_vec_size - i);
- #pragma omp parallel for num_threads(batch_thread_num)
- for (int j = i; j < im_vec_size; ++j) {
- int left = static_cast<int>(det_result.boxes[j].coordinate[0]);
- int top = static_cast<int>(det_result.boxes[j].coordinate[1]);
- int width = static_cast<int>(det_result.boxes[j].coordinate[2]);
- int height = static_cast<int>(det_result.boxes[j].coordinate[3]);
- int right = left + width - 1;
- int bottom = top + height - 1;
- cv::Mat sub_image = input_image(
- cv::Range(top, bottom + 1), cv::Range(left, right + 1));
- float scale_x =
- static_cast<float>(METER_SHAPE[0]) / static_cast<float>(sub_image.cols);
- float scale_y =
- static_cast<float>(METER_SHAPE[1]) / static_cast<float>(sub_image.rows);
- cv::resize(sub_image,
- sub_image,
- cv::Size(),
- scale_x,
- scale_y,
- cv::INTER_LINEAR);
- meters_image[j - i] = std::move(sub_image);
- }
- std::vector<PaddleX::SegResult> batch_result(im_vec_size - i);
- seg_model->predict(meters_image, &batch_result, batch_thread_num);
- #pragma omp parallel for num_threads(batch_thread_num)
- for (int j = i; j < im_vec_size; ++j) {
- if (use_erode) {
- cv::Mat kernel(4, 4, CV_8U, cv::Scalar(1));
- std::vector<uint8_t> label_map(
- batch_result[j - i].label_map.data.begin(),
- batch_result[j - i].label_map.data.end());
- cv::Mat mask(batch_result[j - i].label_map.shape[0],
- batch_result[j - i].label_map.shape[1],
- CV_8UC1,
- label_map.data());
- cv::erode(mask, mask, kernel);
- std::vector<int64_t> map;
- if (mask.isContinuous()) {
- map.assign(mask.data, mask.data + mask.total() * mask.channels());
- } else {
- for (int r = 0; r < mask.rows; r++) {
- map.insert(map.end(),
- mask.ptr<int64_t>(r),
- mask.ptr<int64_t>(r) + mask.cols * mask.channels());
- }
- }
- seg_result[j] = std::move(map);
- } else {
- seg_result[j] = std::move(batch_result[j - i].label_map.data);
- }
- }
- }
- std::vector<READ_RESULT> read_results(meter_num);
- int all_thread_num = std::min(thread_num, meter_num);
- read_process(seg_result, &read_results, all_thread_num);
- cv::Mat output_image = input_image.clone();
- for (int i = 0; i < meter_num; i++) {
- float result = 0;;
- if (read_results[i].scale_num > TYPE_THRESHOLD) {
- result = read_results[i].scales * meter_config[0].scale_value;
- } else {
- result = read_results[i].scales * meter_config[1].scale_value;
- }
- std::cout << "-- Meter " << i
- << " -- result: " << result
- << " --" << std::endl;
- int lx = static_cast<int>(det_result.boxes[i].coordinate[0]);
- int ly = static_cast<int>(det_result.boxes[i].coordinate[1]);
- int w = static_cast<int>(det_result.boxes[i].coordinate[2]);
- int h = static_cast<int>(det_result.boxes[i].coordinate[3]);
- cv::Rect bounding_box = cv::Rect(lx, ly, w, h) &
- cv::Rect(0, 0, output_image.cols, output_image.rows);
- if (w > 0 && h > 0) {
- cv::Scalar color = cv::Scalar(237, 189, 101);
- cv::rectangle(output_image, bounding_box, color);
- cv::rectangle(output_image,
- cv::Point2d(lx, ly),
- cv::Point2d(lx + w, ly - 30),
- color, -1);
- std::string class_name = "Meter";
- cv::putText(output_image,
- class_name + " " + std::to_string(result),
- cv::Point2d(lx, ly-5),
- cv::FONT_HERSHEY_SIMPLEX,
- 1, cv::Scalar(255, 255, 255), 2);
- }
- }
- cv::Mat result_image;
- cv::Size resize_size(RESULT_SHAPE[0], RESULT_SHAPE[1]);
- cv::resize(output_image, result_image, resize_size, 0, 0, cv::INTER_LINEAR);
- std::string save_path = PaddleX::generate_save_path(save_dir, image_path);
- cv::imwrite(save_path, result_image);
- return;
- }
- int main(int argc, char **argv) {
- google::ParseCommandLineFlags(&argc, &argv, true);
- if (FLAGS_det_model_dir == "") {
- std::cerr << "--det_model_dir need to be defined" << std::endl;
- return -1;
- }
- if (FLAGS_seg_model_dir == "") {
- std::cerr << "--seg_model_dir need to be defined" << std::endl;
- return -1;
- }
- if (FLAGS_image == "" & FLAGS_image_list == "" & FLAGS_use_camera == false) {
- std::cerr << "--image or --image_list need to be defined "
- << "when the camera is not been used" << std::endl;
- return -1;
- }
- // 加载模型
- PaddleX::Model det_model;
- det_model.Init(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_use_trt,
- FLAGS_gpu_id, FLAGS_det_key);
- PaddleX::Model seg_model;
- seg_model.Init(FLAGS_seg_model_dir, FLAGS_use_gpu, FLAGS_use_trt,
- FLAGS_gpu_id, FLAGS_seg_key);
- double total_running_time_s = 0.0;
- double total_imread_time_s = 0.0;
- int imgs = 1;
- if (FLAGS_use_camera) {
- cv::VideoCapture cap(FLAGS_camera_id);
- cap.set(CV_CAP_PROP_FRAME_WIDTH, IMAGE_SHAPE[0]);
- cap.set(CV_CAP_PROP_FRAME_HEIGHT, IMAGE_SHAPE[1]);
- if (!cap.isOpened()) {
- std::cout << "Open the camera unsuccessfully." << std::endl;
- return -1;
- }
- std::cout << "Open the camera successfully." << std::endl;
- while (1) {
- auto start = system_clock::now();
- cv::Mat im;
- cap >> im;
- auto imread_end = system_clock::now();
- std::cout << "-------------------------" << std::endl;
- std::cout << "Got a camera image." << std::endl;
- std::string ext_name = ".jpg";
- predict(im, &det_model, &seg_model, FLAGS_save_dir,
- std::to_string(imgs) + ext_name, FLAGS_use_erode,
- FLAGS_erode_kernel, FLAGS_thread_num, FLAGS_seg_batch_size);
- imgs++;
- auto imread_duration = duration_cast<microseconds>(imread_end - start);
- total_imread_time_s += static_cast<double>(imread_duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- auto end = system_clock::now();
- auto duration = duration_cast<microseconds>(end - start);
- total_running_time_s += static_cast<double>(duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- }
- cap.release();
- cv::destroyAllWindows();
- } else {
- if (FLAGS_image_list != "") {
- std::ifstream inf(FLAGS_image_list);
- if (!inf) {
- std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
- return -1;
- }
- std::string image_path;
- while (getline(inf, image_path)) {
- auto start = system_clock::now();
- cv::Mat im = cv::imread(image_path, 1);
- imgs++;
- auto imread_end = system_clock::now();
- predict(im, &det_model, &seg_model, FLAGS_save_dir,
- image_path, FLAGS_use_erode, FLAGS_erode_kernel,
- FLAGS_thread_num, FLAGS_seg_batch_size);
- auto imread_duration = duration_cast<microseconds>(imread_end - start);
- total_imread_time_s += static_cast<double>(imread_duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- auto end = system_clock::now();
- auto duration = duration_cast<microseconds>(end - start);
- total_running_time_s += static_cast<double>(duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- }
- } else {
- auto start = system_clock::now();
- cv::Mat im = cv::imread(FLAGS_image, 1);
- auto imread_end = system_clock::now();
- predict(im, &det_model, &seg_model, FLAGS_save_dir,
- FLAGS_image, FLAGS_use_erode, FLAGS_erode_kernel,
- FLAGS_thread_num, FLAGS_seg_batch_size);
- auto imread_duration = duration_cast<microseconds>(imread_end - start);
- total_imread_time_s += static_cast<double>(imread_duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- auto end = system_clock::now();
- auto duration = duration_cast<microseconds>(end - start);
- total_running_time_s += static_cast<double>(duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- }
- }
- std::cout << "Total running time: " << total_running_time_s
- << " s, average running time: " << total_running_time_s / imgs
- << " s/img, total read img time: " << total_imread_time_s
- << " s, average read time: " << total_imread_time_s / imgs
- << " s/img" << std::endl;
- return 0;
- }
|