PP-HGNet_base.yaml 982 B

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. Global:
  2. model: PP-HGNet_base
  3. mode: check_dataset # check_dataset/train/evaluate/predict
  4. dataset_dir: "/paddle/dataset/paddlex/cls/cls_flowers_examples"
  5. device: gpu:0,1,2,3
  6. output: "output"
  7. CheckDataset:
  8. convert:
  9. enable: False
  10. src_dataset_type: null
  11. split:
  12. enable: False
  13. train_percent: null
  14. val_percent: null
  15. Train:
  16. num_classes: 102
  17. epochs_iters: 20
  18. batch_size: 64
  19. learning_rate: 0.25
  20. pretrain_weight_path: null
  21. warmup_steps: 5
  22. resume_path: null
  23. log_interval: 1
  24. eval_interval: 1
  25. save_interval: 1
  26. Evaluate:
  27. weight_path: "output/best_model.pdparams"
  28. log_interval: 1
  29. Export:
  30. weight_path: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_base_ssld_pretrained.pdparams
  31. Predict:
  32. model_dir: "output/best_model"
  33. input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg"
  34. kernel_option:
  35. run_mode: paddle
  36. batch_size: 1