config.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import yaml
  15. from typing import Union
  16. from paddleclas.ppcls.utils.config import get_config, override_config
  17. from ...base import BaseConfig
  18. from ....utils.misc import abspath
  19. class ClsConfig(BaseConfig):
  20. """Image Classification Task Config"""
  21. def update(self, list_like_obj: list):
  22. """update self
  23. Args:
  24. list_like_obj (list): list of pairs(key0.key1.idx.key2=value), such as:
  25. [
  26. 'topk=2',
  27. 'VALID.transforms.1.ResizeImage.resize_short=300'
  28. ]
  29. """
  30. dict_ = override_config(self.dict, list_like_obj)
  31. self.reset_from_dict(dict_)
  32. def load(self, config_file_path: str):
  33. """load config from yaml file
  34. Args:
  35. config_file_path (str): the path of yaml file.
  36. Raises:
  37. TypeError: the content of yaml file `config_file_path` error.
  38. """
  39. dict_ = yaml.load(open(config_file_path, "rb"), Loader=yaml.Loader)
  40. if not isinstance(dict_, dict):
  41. raise TypeError
  42. self.reset_from_dict(dict_)
  43. def dump(self, config_file_path: str):
  44. """dump self to yaml file
  45. Args:
  46. config_file_path (str): the path to save self as yaml file.
  47. """
  48. with open(config_file_path, "w", encoding="utf-8") as f:
  49. yaml.dump(self.dict, f, default_flow_style=False, sort_keys=False)
  50. def update_dataset(
  51. self,
  52. dataset_path: str,
  53. dataset_type: str = None,
  54. *,
  55. train_list_path: str = None,
  56. ):
  57. """update dataset settings
  58. Args:
  59. dataset_path (str): the root path of dataset.
  60. dataset_type (str, optional): dataset type. Defaults to None.
  61. train_list_path (str, optional): the path of train dataset annotation file . Defaults to None.
  62. Raises:
  63. ValueError: the dataset_type error.
  64. """
  65. dataset_path = abspath(dataset_path)
  66. if dataset_type is None:
  67. dataset_type = "ClsDataset"
  68. if train_list_path:
  69. train_list_path = f"{train_list_path}"
  70. else:
  71. train_list_path = f"{dataset_path}/train.txt"
  72. if dataset_type in ["ClsDataset"]:
  73. ds_cfg = [
  74. f"DataLoader.Train.dataset.name={dataset_type}",
  75. f"DataLoader.Train.dataset.image_root={dataset_path}",
  76. f"DataLoader.Train.dataset.cls_label_path={train_list_path}",
  77. f"DataLoader.Eval.dataset.name={dataset_type}",
  78. f"DataLoader.Eval.dataset.image_root={dataset_path}",
  79. f"DataLoader.Eval.dataset.cls_label_path={dataset_path}/val.txt",
  80. f"Infer.PostProcess.class_id_map_file={dataset_path}/label.txt",
  81. ]
  82. else:
  83. raise ValueError(f"{repr(dataset_type)} is not supported.")
  84. self.update(ds_cfg)
  85. def update_batch_size(self, batch_size: int, mode: str = "train"):
  86. """update batch size setting
  87. Args:
  88. batch_size (int): the batch size number to set.
  89. mode (str, optional): the mode that to be set batch size, must be one of 'train', 'eval', 'test'.
  90. Defaults to 'train'.
  91. Raises:
  92. ValueError: `mode` error.
  93. """
  94. if mode == "train":
  95. if self.DataLoader["Train"]["sampler"].get("batch_size", False):
  96. _cfg = [f"DataLoader.Train.sampler.batch_size={batch_size}"]
  97. else:
  98. _cfg = [f"DataLoader.Train.sampler.first_bs={batch_size}"]
  99. _cfg = [f"DataLoader.Train.dataset.name=MultiScaleDataset"]
  100. elif mode == "eval":
  101. _cfg = [f"DataLoader.Eval.sampler.batch_size={batch_size}"]
  102. elif mode == "test":
  103. _cfg = [f"DataLoader.Infer.batch_size={batch_size}"]
  104. else:
  105. raise ValueError("The input `mode` should be train, eval or test.")
  106. self.update(_cfg)
  107. def update_learning_rate(self, learning_rate: float):
  108. """update learning rate
  109. Args:
  110. learning_rate (float): the learning rate value to set.
  111. """
  112. _cfg = [f"Optimizer.lr.learning_rate={learning_rate}"]
  113. self.update(_cfg)
  114. def update_warmup_epochs(self, warmup_epochs: int):
  115. """update warmup epochs
  116. Args:
  117. warmup_epochs (int): the warmup epochs value to set.
  118. """
  119. _cfg = [f"Optimizer.lr.warmup_epoch={warmup_epochs}"]
  120. self.update(_cfg)
  121. def update_pretrained_weights(self, pretrained_model: str):
  122. """update pretrained weight path
  123. Args:
  124. pretrained_model (str): the local path or url of pretrained weight file to set.
  125. """
  126. assert isinstance(
  127. pretrained_model, (str, type(None))
  128. ), "The 'pretrained_model' should be a string, indicating the path to the '*.pdparams' file, or 'None', \
  129. indicating that no pretrained model to be used."
  130. if pretrained_model is None:
  131. self.update(["Global.pretrained_model=None"])
  132. self.update(["Arch.pretrained=False"])
  133. else:
  134. if pretrained_model.lower() == "default":
  135. self.update(["Global.pretrained_model=None"])
  136. self.update(["Arch.pretrained=True"])
  137. else:
  138. if not pretrained_model.startswith(("http://", "https://")):
  139. pretrained_model = abspath(
  140. pretrained_model.replace(".pdparams", "")
  141. )
  142. self.update([f"Global.pretrained_model={pretrained_model}"])
  143. def update_num_classes(self, num_classes: int):
  144. """update classes number
  145. Args:
  146. num_classes (int): the classes number value to set.
  147. """
  148. update_str_list = [f"Arch.class_num={num_classes}"]
  149. if self._get_arch_name() == "DistillationModel":
  150. update_str_list.append(f"Arch.models.0.Teacher.class_num={num_classes}")
  151. update_str_list.append(f"Arch.models.1.Student.class_num={num_classes}")
  152. self.update(update_str_list)
  153. def _update_slim_config(self, slim_config_path: str):
  154. """update slim settings
  155. Args:
  156. slim_config_path (str): the path to slim config yaml file.
  157. """
  158. slim_config = yaml.load(open(slim_config_path, "rb"), Loader=yaml.Loader)[
  159. "Slim"
  160. ]
  161. self.update([f"Slim={slim_config}"])
  162. def _update_amp(self, amp: Union[None, str]):
  163. """update AMP settings
  164. Args:
  165. amp (None | str): the AMP settings.
  166. Raises:
  167. ValueError: AMP setting `amp` error, missing field `AMP`.
  168. """
  169. if amp is None or amp == "OFF":
  170. if "AMP" in self.dict:
  171. self._dict.pop("AMP")
  172. else:
  173. if "AMP" not in self.dict:
  174. raise ValueError("Config must have AMP information.")
  175. _cfg = ["AMP.use_amp=True", f"AMP.level={amp}"]
  176. self.update(_cfg)
  177. def update_num_workers(self, num_workers: int):
  178. """update workers number of train and eval dataloader
  179. Args:
  180. num_workers (int): the value of train and eval dataloader workers number to set.
  181. """
  182. _cfg = [
  183. f"DataLoader.Train.loader.num_workers={num_workers}",
  184. f"DataLoader.Eval.loader.num_workers={num_workers}",
  185. ]
  186. self.update(_cfg)
  187. def update_shared_memory(self, shared_memeory: bool):
  188. """update shared memory setting of train and eval dataloader
  189. Args:
  190. shared_memeory (bool): whether or not to use shared memory
  191. """
  192. assert isinstance(shared_memeory, bool), "shared_memeory should be a bool"
  193. _cfg = [
  194. f"DataLoader.Train.loader.use_shared_memory={shared_memeory}",
  195. f"DataLoader.Eval.loader.use_shared_memory={shared_memeory}",
  196. ]
  197. self.update(_cfg)
  198. def update_shuffle(self, shuffle: bool):
  199. """update shuffle setting of train and eval dataloader
  200. Args:
  201. shuffle (bool): whether or not to shuffle the data
  202. """
  203. assert isinstance(shuffle, bool), "shuffle should be a bool"
  204. _cfg = [
  205. f"DataLoader.Train.loader.shuffle={shuffle}",
  206. f"DataLoader.Eval.loader.shuffle={shuffle}",
  207. ]
  208. self.update(_cfg)
  209. def update_dali(self, dali: bool):
  210. """enable DALI setting of train and eval dataloader
  211. Args:
  212. dali (bool): whether or not to use DALI
  213. """
  214. assert isinstance(dali, bool), "dali should be a bool"
  215. _cfg = [
  216. f"Global.use_dali={dali}",
  217. f"Global.use_dali={dali}",
  218. ]
  219. self.update(_cfg)
  220. def update_seed(self, seed: int):
  221. """update seed
  222. Args:
  223. seed (int): the random seed value to set
  224. """
  225. _cfg = [f"Global.seed={seed}"]
  226. self.update(_cfg)
  227. def update_device(self, device: str):
  228. """update device setting
  229. Args:
  230. device (str): the running device to set
  231. """
  232. device = device.split(":")[0]
  233. _cfg = [f"Global.device={device}"]
  234. self.update(_cfg)
  235. def update_label_dict_path(self, dict_path: str):
  236. """update label dict file path
  237. Args:
  238. dict_path (str): the path of label dict file to set
  239. """
  240. _cfg = [
  241. f"PostProcess.Topk.class_id_map_file={abspath(dict_path)}",
  242. ]
  243. self.update(_cfg)
  244. def _update_to_static(self, dy2st: bool):
  245. """update config to set dynamic to static mode
  246. Args:
  247. dy2st (bool): whether or not to use the dynamic to static mode.
  248. """
  249. self.update([f"Global.to_static={dy2st}"])
  250. def _update_use_vdl(self, use_vdl: bool):
  251. """update config to set VisualDL
  252. Args:
  253. use_vdl (bool): whether or not to use VisualDL.
  254. """
  255. self.update([f"Global.use_visualdl={use_vdl}"])
  256. def _update_epochs(self, epochs: int):
  257. """update epochs setting
  258. Args:
  259. epochs (int): the epochs number value to set
  260. """
  261. self.update([f"Global.epochs={epochs}"])
  262. def _update_checkpoints(self, resume_path: Union[None, str]):
  263. """update checkpoint setting
  264. Args:
  265. resume_path (None | str): the resume training setting. if is `None`, train from scratch, otherwise,
  266. train from checkpoint file that path is `.pdparams` file.
  267. """
  268. if resume_path is not None:
  269. resume_path = resume_path.replace(".pdparams", "")
  270. self.update([f"Global.checkpoints={resume_path}"])
  271. def _update_output_dir(self, save_dir: str):
  272. """update output directory
  273. Args:
  274. save_dir (str): the path to save outputs.
  275. """
  276. self.update([f"Global.output_dir={abspath(save_dir)}"])
  277. def update_log_interval(self, log_interval: int):
  278. """update log interval(steps)
  279. Args:
  280. log_interval (int): the log interval value to set.
  281. """
  282. self.update([f"Global.print_batch_step={log_interval}"])
  283. def update_eval_interval(self, eval_interval: int):
  284. """update eval interval(epochs)
  285. Args:
  286. eval_interval (int): the eval interval value to set.
  287. """
  288. self.update([f"Global.eval_interval={eval_interval}"])
  289. def update_save_interval(self, save_interval: int):
  290. """update eval interval(epochs)
  291. Args:
  292. save_interval (int): the save interval value to set.
  293. """
  294. self.update([f"Global.save_interval={save_interval}"])
  295. def update_log_ranks(self, device):
  296. """update log ranks
  297. Args:
  298. device (str): the running device to set
  299. """
  300. log_ranks = device.split(":")[1]
  301. self.update([f'Global.log_ranks="{log_ranks}"'])
  302. def update_print_mem_info(self, print_mem_info: bool):
  303. """setting print memory info"""
  304. assert isinstance(print_mem_info, bool), "print_mem_info should be a bool"
  305. self.update([f"Global.print_mem_info={print_mem_info}"])
  306. def _update_predict_img(self, infer_img: str, infer_list: str = None):
  307. """update image to be predicted
  308. Args:
  309. infer_img (str): the path to image that to be predicted.
  310. infer_list (str, optional): the path to file that images. Defaults to None.
  311. """
  312. if infer_list:
  313. self.update([f"Infer.infer_list={infer_list}"])
  314. self.update([f"Infer.infer_imgs={infer_img}"])
  315. def _update_save_inference_dir(self, save_inference_dir: str):
  316. """update directory path to save inference model files
  317. Args:
  318. save_inference_dir (str): the directory path to set.
  319. """
  320. self.update([f"Global.save_inference_dir={abspath(save_inference_dir)}"])
  321. def _update_inference_model_dir(self, model_dir: str):
  322. """update inference model directory
  323. Args:
  324. model_dir (str): the directory path of inference model fils that used to predict.
  325. """
  326. self.update([f"Global.inference_model_dir={abspath(model_dir)}"])
  327. def _update_infer_img(self, infer_img: str):
  328. """update path of image that would be predict
  329. Args:
  330. infer_img (str): the image path.
  331. """
  332. self.update([f"Global.infer_imgs={infer_img}"])
  333. def _update_infer_device(self, device: str):
  334. """update the device used in predicting
  335. Args:
  336. device (str): the running device setting
  337. """
  338. self.update([f'Global.use_gpu={device.split(":")[0]=="gpu"}'])
  339. def _update_enable_mkldnn(self, enable_mkldnn: bool):
  340. """update whether to enable MKLDNN
  341. Args:
  342. enable_mkldnn (bool): `True` is enable, otherwise is disable.
  343. """
  344. self.update([f"Global.enable_mkldnn={enable_mkldnn}"])
  345. def _update_infer_img_shape(self, img_shape: str):
  346. """update image cropping shape in the preprocessing
  347. Args:
  348. img_shape (str): the shape of cropping in the preprocessing,
  349. i.e. `PreProcess.transform_ops.1.CropImage.size`.
  350. """
  351. self.update([f"PreProcess.transform_ops.1.CropImage.size={img_shape}"])
  352. def _update_save_predict_result(self, save_dir: str):
  353. """update directory that save predicting output
  354. Args:
  355. save_dir (str): the dicrectory path that save predicting output.
  356. """
  357. self.update([f"Infer.save_dir={save_dir}"])
  358. def update_model(self, **kwargs):
  359. """update model settings"""
  360. for k in kwargs:
  361. v = kwargs[k]
  362. self.update([f"Arch.{k}={v}"])
  363. def update_teacher_model(self, **kwargs):
  364. """update teacher model settings"""
  365. for k in kwargs:
  366. v = kwargs[k]
  367. self.update([f"Arch.models.0.Teacher.{k}={v}"])
  368. def update_student_model(self, **kwargs):
  369. """update student model settings"""
  370. for k in kwargs:
  371. v = kwargs[k]
  372. self.update([f"Arch.models.1.Student.{k}={v}"])
  373. def get_epochs_iters(self) -> int:
  374. """get epochs
  375. Returns:
  376. int: the epochs value, i.e., `Global.epochs` in config.
  377. """
  378. return self.dict["Global"]["epochs"]
  379. def get_log_interval(self) -> int:
  380. """get log interval(steps)
  381. Returns:
  382. int: the log interval value, i.e., `Global.print_batch_step` in config.
  383. """
  384. return self.dict["Global"]["print_batch_step"]
  385. def get_eval_interval(self) -> int:
  386. """get eval interval(epochs)
  387. Returns:
  388. int: the eval interval value, i.e., `Global.eval_interval` in config.
  389. """
  390. return self.dict["Global"]["eval_interval"]
  391. def get_save_interval(self) -> int:
  392. """get save interval(epochs)
  393. Returns:
  394. int: the save interval value, i.e., `Global.save_interval` in config.
  395. """
  396. return self.dict["Global"]["save_interval"]
  397. def get_learning_rate(self) -> float:
  398. """get learning rate
  399. Returns:
  400. float: the learning rate value, i.e., `Optimizer.lr.learning_rate` in config.
  401. """
  402. return self.dict["Optimizer"]["lr"]["learning_rate"]
  403. def get_warmup_epochs(self) -> int:
  404. """get warmup epochs
  405. Returns:
  406. int: the warmup epochs value, i.e., `Optimizer.lr.warmup_epochs` in config.
  407. """
  408. return self.dict["Optimizer"]["lr"]["warmup_epoch"]
  409. def get_label_dict_path(self) -> str:
  410. """get label dict file path
  411. Returns:
  412. str: the label dict file path, i.e., `PostProcess.Topk.class_id_map_file` in config.
  413. """
  414. return self.dict["PostProcess"]["Topk"]["class_id_map_file"]
  415. def get_batch_size(self, mode="train") -> int:
  416. """get batch size
  417. Args:
  418. mode (str, optional): the mode that to be get batch size value, must be one of 'train', 'eval', 'test'.
  419. Defaults to 'train'.
  420. Returns:
  421. int: the batch size value of `mode`, i.e., `DataLoader.{mode}.sampler.batch_size` in config.
  422. """
  423. return self.dict["DataLoader"]["Train"]["sampler"]["batch_size"]
  424. def get_qat_epochs_iters(self) -> int:
  425. """get qat epochs
  426. Returns:
  427. int: the epochs value.
  428. """
  429. return self.get_epochs_iters()
  430. def get_qat_learning_rate(self) -> float:
  431. """get qat learning rate
  432. Returns:
  433. float: the learning rate value.
  434. """
  435. return self.get_learning_rate()
  436. def _get_arch_name(self) -> str:
  437. """get architecture name of model
  438. Returns:
  439. str: the model arch name, i.e., `Arch.name` in config.
  440. """
  441. return self.dict["Arch"]["name"]
  442. def _get_dataset_root(self) -> str:
  443. """get root directory of dataset, i.e. `DataLoader.Train.dataset.image_root`
  444. Returns:
  445. str: the root directory of dataset
  446. """
  447. return self.dict["DataLoader"]["Train"]["dataset"]["image_root"]
  448. def get_train_save_dir(self) -> str:
  449. """get the directory to save output
  450. Returns:
  451. str: the directory to save output
  452. """
  453. return self["Global"]["output_dir"]