| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451 |
- # zhch/ppstructurev3_multi_gpu_multiprocess_official.py
- """
- 多GPU多进程推理始终有问题,多个进程启动后,paddle底层报错
- 目前无法定位原因
- """
- import json
- import time
- import os
- import glob
- import traceback
- import argparse
- import sys
- from pathlib import Path
- from typing import List, Dict, Any, Tuple
- from multiprocessing import Manager, Process, Queue
- from queue import Empty
- import cv2
- import numpy as np
- from paddlex import create_pipeline
- from paddlex.utils.device import constr_device, parse_device
- from tqdm import tqdm
- # import paddle # ❌ 不要在主模块导入paddle
- # from cuda_utils import detect_available_gpus, monitor_gpu_memory # ❌ 不要在主进程使用
- from dotenv import load_dotenv
- load_dotenv(override=True)
- def worker(pipeline_name_or_config_path: str,
- device: str,
- task_queue: Queue,
- result_queue: Queue,
- batch_size: int,
- output_dir: str,
- worker_id: int):
- """
- 工作进程函数 - 基于官方parallel_inference.md实现
-
- Args:
- pipeline_name_or_config_path: Pipeline名称或配置路径
- device: 设备字符串
- task_queue: 任务队列
- result_queue: 结果队列
- batch_size: 批处理大小
- output_dir: 输出目录
- worker_id: 工作进程ID
- """
- try:
- # 在子进程中导入paddle,避免主进程CUDA冲突
- import paddle
- import os
-
- # 设置子进程的CUDA设备
- device_id = device.split(':')[1] if ':' in device else '0'
- os.environ['CUDA_VISIBLE_DEVICES'] = device_id
- # 设置paddle使用单精度,避免混合精度问题
- # paddle.set_default_dtype("float32")
-
- # 清理GPU缓存
- if paddle.device.cuda.device_count() > 0:
- paddle.device.cuda.empty_cache()
- # 直接创建pipeline,让PaddleX自动处理设备初始化
- pipeline = create_pipeline(pipeline_name_or_config_path, device=device)
- print(f"Worker {worker_id} initialized with device {device}")
-
- except Exception as e:
- print(f"Worker {worker_id} ({device}) initialization failed: {e}", file=sys.stderr)
- traceback.print_exc()
- # 发送错误信息到结果队列
- result_queue.put([{
- "error": f"Worker initialization failed: {str(e)}",
- "worker_id": worker_id,
- "device": device,
- "success": False
- }])
- return
-
- try:
- should_end = False
- batch = []
- processed_count = 0
-
- while not should_end:
- try:
- input_path = task_queue.get_nowait()
- except Empty:
- should_end = True
- except Exception as e:
- # 处理其他可能的异常
- print(f"Unexpected error while getting task: {e}", file=sys.stderr)
- traceback.print_exc()
- should_end = True
- else:
- # 检查是否为结束信号
- if input_path is None:
- should_end = True
- else:
- batch.append(input_path)
- if batch and (len(batch) == batch_size or should_end):
- try:
- start_time = time.time()
-
- # 使用pipeline预测
- results = pipeline.predict(
- batch,
- use_doc_orientation_classify=True,
- use_doc_unwarping=False,
- use_seal_recognition=True,
- use_chart_recognition=True,
- use_table_recognition=True,
- use_formula_recognition=True,
- )
-
- batch_processing_time = time.time() - start_time
- batch_results = []
-
- for result in results:
- try:
- input_path = Path(result["input_path"])
-
- # 保存结果
- if result.get("page_index") is not None:
- output_filename = f"{input_path.stem}_{result['page_index']}"
- else:
- output_filename = f"{input_path.stem}"
-
- # 保存JSON和Markdown
- json_output_path = str(Path(output_dir, f"{output_filename}.json"))
- md_output_path = str(Path(output_dir, f"{output_filename}.md"))
-
- result.save_to_json(json_output_path)
- result.save_to_markdown(md_output_path)
-
- # 记录处理结果
- batch_results.append({
- "image_path": input_path.name,
- "processing_time": batch_processing_time / len(batch), # 平均时间
- "success": True,
- "device": device,
- "worker_id": worker_id,
- "output_json": json_output_path,
- "output_md": md_output_path
- })
-
- processed_count += 1
-
- except Exception as e:
- traceback.print_exc()
- batch_results.append({
- "image_path": Path(result["input_path"]).name,
- "processing_time": 0,
- "success": False,
- "device": device,
- "worker_id": worker_id,
- "error": str(e)
- })
-
- # 将结果放入结果队列
- result_queue.put(batch_results)
-
- # print(f"Worker {worker_id} ({device}) processed batch of {len(batch)} files. Total: {processed_count}")
-
- except Exception as e:
- # 批处理失败
- error_results = []
- for img_path in batch:
- error_results.append({
- "image_path": Path(img_path).name,
- "processing_time": 0,
- "success": False,
- "device": device,
- "worker_id": worker_id,
- "error": str(e)
- })
- result_queue.put(error_results)
-
- print(f"Error processing batch {batch} on {device}: {e}", file=sys.stderr)
- traceback.print_exc()
-
- batch.clear()
-
- except Exception as e:
- print(f"Worker {worker_id} ({device}) initialization failed: {e}", file=sys.stderr)
- traceback.print_exc()
- finally:
- # 清理GPU缓存
- try:
- paddle.device.cuda.empty_cache()
- except Exception as e:
- print(f"Error clearing GPU cache: {e}", file=sys.stderr)
- print(f"Worker {worker_id} ({device}) finished")
- def parallel_process_with_official_approach(image_paths: List[str],
- pipeline_name: str = "PP-StructureV3",
- device_str: str = "gpu:0,1",
- instances_per_device: int = 1,
- batch_size: int = 1,
- output_dir: str = "./output") -> List[Dict[str, Any]]:
- """
- 使用官方推荐的方法进行多GPU多进程并行处理
-
- Args:
- image_paths: 图像路径列表
- pipeline_name: Pipeline名称
- device_str: 设备字符串,如"gpu:0,1,2,3"
- instances_per_device: 每个设备的实例数
- batch_size: 批处理大小
- output_dir: 输出目录
-
- Returns:
- 处理结果列表
- """
- # 创建输出目录
- output_path = Path(output_dir)
- output_path.mkdir(parents=True, exist_ok=True)
-
- # 解析设备 - 不要在主进程中初始化paddle
- try:
- device_type, device_ids = parse_device(device_str)
- if device_ids is None or len(device_ids) < 1:
- print("No valid devices specified.", file=sys.stderr)
- return []
-
- print(f"Parsed devices: {device_type}:{device_ids}")
-
- except Exception as e:
- print(f"Failed to parse device string '{device_str}': {e}", file=sys.stderr)
- return []
-
- # 验证批处理大小
- if batch_size <= 0:
- print("Batch size must be greater than 0.", file=sys.stderr)
- return []
-
- total_instances = len(device_ids) * instances_per_device
- print(f"Configuration:")
- print(f" Devices: {device_ids}")
- print(f" Instances per device: {instances_per_device}")
- print(f" Total instances: {total_instances}")
- print(f" Batch size: {batch_size}")
- print(f" Total images: {len(image_paths)}")
-
- # 使用Manager创建队列
- with Manager() as manager:
- task_queue = manager.Queue()
- result_queue = manager.Queue()
-
- # 将任务放入队列
- for img_path in image_paths:
- task_queue.put(str(img_path))
-
- print(f"Added {len(image_paths)} tasks to queue")
-
- # 创建并启动工作进程
- processes = []
- worker_id = 0
-
- for device_id in device_ids:
- for _ in range(instances_per_device):
- device = constr_device(device_type, [device_id])
- p = Process(
- target=worker,
- args=(
- pipeline_name,
- device,
- task_queue,
- result_queue,
- batch_size,
- str(output_path),
- worker_id,
- ),
- )
- p.start()
- processes.append(p)
- worker_id += 1
-
- print(f"Started {len(processes)} worker processes")
-
- # 发送结束信号
- for _ in range(total_instances):
- task_queue.put(None)
-
- # 收集结果
- all_results = []
- total_images = len(image_paths)
-
- with tqdm(total=total_images, desc="Processing images", unit="img") as pbar:
- completed_count = 0
-
- while completed_count < total_images:
- try:
- batch_results = result_queue.get(timeout=600) # 10分钟超时
- all_results.extend(batch_results)
-
- # 更新进度条
- batch_success_count = sum(1 for r in batch_results if r.get('success', False))
- completed_count += len(batch_results)
- pbar.update(len(batch_results))
-
- # 显示当前批次状态
- pbar.set_postfix({
- 'batch_success': f"{batch_success_count}/{len(batch_results)}",
- 'total_success': f"{sum(1 for r in all_results if r.get('success', False))}/{completed_count}"
- })
-
- except Exception as e:
- print(f"Error collecting results: {e}")
- break
-
- # 等待所有进程结束
- for p in processes:
- p.join()
-
- return all_results
- def main():
- """主函数"""
- parser = argparse.ArgumentParser(description="PaddleX PP-StructureV3 Multi-GPU Parallel Processing")
-
- # 必需参数
- parser.add_argument("--input_dir", type=str, default="../../OmniDocBench/OpenDataLab___OmniDocBench/images", help="Input directory")
- parser.add_argument("--output_dir", type=str, default="./OmniDocBench_Results_Official", help="Output directory")
- parser.add_argument("--pipeline", type=str, default="PP-StructureV3", help="Pipeline name")
- parser.add_argument("--device", type=str, default="gpu:0", help="Device string")
- parser.add_argument("--instances_per_device", type=int, default=1, help="Instances per device")
- parser.add_argument("--batch_size", type=int, default=4, help="Batch size")
- parser.add_argument("--input_pattern", type=str, default="*", help="Input file pattern")
- parser.add_argument("--test_mode", action="store_true", help="Test mode (process only 20 images)")
-
- args = parser.parse_args()
-
- try:
- # 获取图像文件列表
- input_dir = Path(args.input_dir).resolve()
- output_dir = Path(args.output_dir).resolve()
- print(f"Input dir: {input_dir}, Output dir: {output_dir}")
- if not input_dir.exists():
- print(f"Input directory does not exist: {input_dir}")
- return 1
-
- # 查找图像文件
- image_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.tif']
- image_files = []
- for ext in image_extensions:
- image_files.extend(list(input_dir.glob(f"*{ext}")))
- image_files.extend(list(input_dir.glob(f"*{ext.upper()}")))
-
- if not image_files:
- print(f"No image files found in {input_dir}")
- return 1
-
- image_files = [str(f) for f in image_files]
- print(f"Found {len(image_files)} image files")
-
- if args.test_mode:
- image_files = image_files[:20]
- print(f"Test mode: processing only {len(image_files)} images")
-
- # 开始处理
- start_time = time.time()
- results = parallel_process_with_official_approach(
- image_files,
- args.pipeline,
- args.device,
- args.instances_per_device,
- args.batch_size,
- str(output_dir)
- )
- total_time = time.time() - start_time
-
- # 统计结果
- success_count = sum(1 for r in results if r.get('success', False))
- error_count = len(results) - success_count
-
- print(f"\n" + "="*50)
- print(f"Processing completed!")
- print(f"Total files: {len(image_files)}")
- print(f"Successful: {success_count}")
- print(f"Failed: {error_count}")
- print(f"Success rate: {success_count / len(image_files) * 100:.2f}%")
- print(f"Total time: {total_time:.2f} seconds")
- print(f"Throughput: {len(image_files) / total_time:.2f} images/second")
- # 保存结果统计
- stats = {
- "total_files": len(image_files),
- "success_count": success_count,
- "error_count": error_count,
- "success_rate": success_count / len(image_files),
- "total_time": total_time,
- "throughput": len(image_files) / total_time,
- "batch_size": args.batch_size,
- "gpu_ids": args.device,
- "pipelines_per_gpu": args.instances_per_device
- }
-
- # 保存最终结果
- output_file = os.path.join(output_dir, f"OmniDocBench_MultiGPU_batch{args.batch_size}.json")
- final_results = {
- "stats": stats,
- "results": results
- }
-
- with open(output_file, 'w', encoding='utf-8') as f:
- json.dump(final_results, f, ensure_ascii=False, indent=2)
-
- return 0
-
- except Exception as e:
- print(f"Processing failed: {e}", file=sys.stderr)
- traceback.print_exc()
- return 1
- if __name__ == "__main__":
- # ❌ 移除所有主进程CUDA操作
- # print(f"🚀 启动OCR程序...")
- # print(f"CUDA 版本: {paddle.device.cuda.get_device_name()}")
- # print(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES')}")
- # available_gpus = detect_available_gpus()
- # monitor_gpu_memory(available_gpus)
-
- # ✅ 只进行简单的环境检查
- print(f"🚀 启动OCR程序...")
- print(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES')}")
-
- if len(sys.argv) == 1:
- # 如果没有命令行参数,使用默认配置运行
- print("No command line arguments provided. Running with default configuration...")
-
- # 默认配置
- default_config = {
- "input_dir": "../../OmniDocBench/OpenDataLab___OmniDocBench/images",
- "output_dir": "./OmniDocBench_Results_Official",
- "pipeline": "PP-StructureV3",
- "device": "gpu:3",
- "instances_per_device": 1,
- "batch_size": 1,
- # "test_mode": False
- }
-
- # 构造参数
- sys.argv = [sys.argv[0]]
- for key, value in default_config.items():
- sys.argv.extend([f"--{key}", str(value)])
-
- # 测试模式
- sys.argv.append("--test_mode")
-
- sys.exit(main())
|