| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from copy import deepcopy
- from abc import ABC, abstractmethod
- from .kernel_option import PaddleInferenceOption
- from .utils.paddle_inference_predictor import _PaddleInferencePredictor
- from .utils.mixin import FromDictMixin
- from .utils.batch import batchable_method, Batcher
- from .utils.node import Node
- from .utils.official_models import official_models
- from ....utils.device import get_device
- from ....utils import logging
- from ....utils.config import AttrDict
- class BasePredictor(ABC, FromDictMixin, Node):
- """ Base Predictor """
- __is_base = True
- MODEL_FILE_TAG = 'inference'
- def __init__(self,
- model_name,
- model_dir,
- kernel_option,
- output,
- pre_transforms=None,
- post_transforms=None):
- super().__init__()
- self.model_name = model_name
- self.model_dir = model_dir
- self.kernel_option = kernel_option
- self.output = output
- self.other_src = self.load_other_src()
- logging.debug(
- f"-------------------- {self.__class__.__name__} --------------------\n\
- Model: {self.model_dir}\n\
- Env: {self.kernel_option}")
- self.pre_tfs, self.post_tfs = self.build_transforms(pre_transforms,
- post_transforms)
- param_path = os.path.join(model_dir, f"{self.MODEL_FILE_TAG}.pdiparams")
- model_path = os.path.join(model_dir, f"{self.MODEL_FILE_TAG}.pdmodel")
- self._predictor = _PaddleInferencePredictor(
- param_path=param_path, model_path=model_path, option=kernel_option)
- def build_transforms(self, pre_transforms, post_transforms):
- """ build pre-transforms and post-transforms
- """
- pre_tfs = pre_transforms if pre_transforms is not None else self._get_pre_transforms_from_config(
- )
- logging.debug(f"Preprocess Ops: {self._format_transforms(pre_tfs)}")
- post_tfs = post_transforms if post_transforms is not None else self._get_post_transforms_from_config(
- )
- logging.debug(f"Postprocessing: {self._format_transforms(post_tfs)}")
- return pre_tfs, post_tfs
- def predict(self, input, batch_size=1):
- """ predict """
- if not isinstance(input, dict) and not (isinstance(input, list) and all(
- isinstance(ele, dict) for ele in input)):
- raise TypeError(f"`input` should be a dict or a list of dicts.")
- orig_input = input
- if isinstance(input, dict):
- input = [input]
- output = []
- for mini_batch in Batcher(input, batch_size=batch_size):
- mini_batch = self._preprocess(
- mini_batch, pre_transforms=self.pre_tfs)
- for data in mini_batch:
- self.check_input_keys(data)
- mini_batch = self._run(batch_input=mini_batch)
- for data in mini_batch:
- self.check_output_keys(data)
- mini_batch = self._postprocess(
- mini_batch, post_transforms=self.post_tfs)
- output.extend(mini_batch)
- if isinstance(orig_input, dict):
- return output[0]
- else:
- return output
- @abstractmethod
- def _run(self, batch_input):
- raise NotImplementedError
- @abstractmethod
- def _get_pre_transforms_from_config(self):
- """ get preprocess transforms """
- raise NotImplementedError
- @abstractmethod
- def _get_post_transforms_from_config(self):
- """ get postprocess transforms """
- raise NotImplementedError
- @batchable_method
- def _preprocess(self, data, pre_transforms):
- """ preprocess """
- for tf in pre_transforms:
- data = tf(data)
- return data
- @batchable_method
- def _postprocess(self, data, post_transforms):
- """ postprocess """
- for tf in post_transforms:
- data = tf(data)
- return data
- def _format_transforms(self, transforms):
- """ format transforms """
- ops_str = ", ".join([str(tf) for tf in transforms])
- return f"[{ops_str}]"
- def load_other_src(self):
- """ load other source
- """
- return None
- def get_input_keys(self):
- """get keys of input dict
- """
- return self.pre_tfs[0].get_input_keys()
- class PredictorBuilderByConfig(object):
- """build model predictor
- """
- def __init__(self, config):
- """
- Args:
- config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
- """
- model_name = config.Global.model
- device = config.Global.device
- predict_config = deepcopy(config.Predict)
- model_dir = predict_config.pop('model_dir')
- kernel_setting = predict_config.pop('kernel_option', {})
- kernel_setting.setdefault('device', device)
- kernel_option = PaddleInferenceOption(**kernel_setting)
- self.input_path = predict_config.pop('input_path')
- self.predictor = BasePredictor.get(model_name)(
- model_name=model_name,
- model_dir=model_dir,
- kernel_option=kernel_option,
- output=config.Global.output,
- **predict_config)
- def predict(self):
- """predict
- """
- self.predictor.predict({'input_path': self.input_path})
- def build_predictor(*args, **kwargs):
- """build predictor by config for dev
- """
- return PredictorBuilderByConfig(*args, **kwargs)
- def create_model(model_name,
- model_dir=None,
- kernel_option=None,
- output="./",
- pre_transforms=None,
- post_transforms=None,
- *args,
- **kwargs):
- """create model for predicting using inference model
- """
- kernel_option = PaddleInferenceOption(
- ) if kernel_option is None else kernel_option
- if model_dir is None:
- if model_name in official_models:
- model_dir = official_models[model_name]
- return BasePredictor.get(model_name)(model_name=model_name,
- model_dir=model_dir,
- kernel_option=kernel_option,
- output=output,
- pre_transforms=pre_transforms,
- post_transforms=post_transforms,
- *args,
- **kwargs)
|