predictor.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import numpy as np
  16. from ....utils import logging
  17. from ...base import BasePredictor
  18. from ...base.predictor.transforms import image_common
  19. from . import transforms as T
  20. from .keys import DetKeys as K
  21. from .utils import InnerConfig
  22. from ..model_list import MODELS
  23. class DetPredictor(BasePredictor):
  24. """ Detection Predictor """
  25. entities = MODELS
  26. def load_other_src(self):
  27. """ load the inner config file """
  28. infer_cfg_file_path = os.path.join(self.model_dir, 'inference.yml')
  29. if not os.path.exists(infer_cfg_file_path):
  30. raise FileNotFoundError(
  31. f"Cannot find config file: {infer_cfg_file_path}")
  32. return InnerConfig(infer_cfg_file_path)
  33. @classmethod
  34. def get_input_keys(cls):
  35. """ get input keys """
  36. return [[K.IMAGE], [K.IM_PATH]]
  37. @classmethod
  38. def get_output_keys(cls):
  39. """ get output keys """
  40. return [K.BOXES]
  41. def _run(self, batch_input):
  42. """ run """
  43. input_dict = {}
  44. input_dict["image"] = np.stack(
  45. [data[K.IMAGE] for data in batch_input], axis=0).astype(
  46. dtype=np.float32, copy=False)
  47. input_dict["scale_factor"] = np.stack(
  48. [data[K.SCALE_FACTOR][::-1] for data in batch_input],
  49. axis=0).astype(
  50. dtype=np.float32, copy=False)
  51. input_dict["im_shape"] = np.stack(
  52. [data[K.IM_SIZE][::-1] for data in batch_input], axis=0).astype(
  53. dtype=np.float32, copy=False)
  54. input_ = [input_dict[i] for i in self._predictor.get_input_names()]
  55. batch_np_boxes, batch_np_boxes_num = self._predictor.predict(input_)
  56. pred = batch_input
  57. box_idx_start = 0
  58. for idx in range(len(batch_input)):
  59. np_boxes_num = batch_np_boxes_num[idx]
  60. box_idx_end = box_idx_start + np_boxes_num
  61. np_boxes = batch_np_boxes[box_idx_start:box_idx_end]
  62. box_idx_start = box_idx_end
  63. batch_input[idx][K.BOXES] = np_boxes
  64. return pred
  65. def _get_pre_transforms_from_config(self):
  66. """ get preprocess transforms """
  67. logging.info(
  68. f"Transformation operators for data preprocessing will be inferred from config file."
  69. )
  70. pre_transforms = self.other_src.pre_transforms
  71. pre_transforms.insert(0, image_common.ReadImage(format='RGB'))
  72. return pre_transforms
  73. def _get_post_transforms_from_config(self):
  74. """ get postprocess transforms """
  75. return [
  76. T.SaveDetResults(
  77. save_dir=self.output, labels=self.other_src.labels),
  78. T.PrintResult()
  79. ]