| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <glog/logging.h>
- #include <omp.h>
- #include <algorithm>
- #include <chrono> // NOLINT
- #include <fstream>
- #include <iostream>
- #include <string>
- #include <vector>
- #include <utility>
- #include "include/paddlex/paddlex.h"
- using namespace std::chrono; // NOLINT
- DEFINE_string(model_dir, "", "Path of inference model");
- DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
- DEFINE_bool(use_trt, false, "Infering with TensorRT");
- DEFINE_int32(gpu_id, 0, "GPU card id");
- DEFINE_string(key, "", "key of encryption");
- DEFINE_string(image, "", "Path of test image file");
- DEFINE_string(image_list, "", "Path of test image list file");
- DEFINE_int32(batch_size, 1, "Batch size of infering");
- DEFINE_int32(thread_num,
- omp_get_num_procs(),
- "Number of preprocessing threads");
- int main(int argc, char** argv) {
- // Parsing command-line
- google::ParseCommandLineFlags(&argc, &argv, true);
- if (FLAGS_model_dir == "") {
- std::cerr << "--model_dir need to be defined" << std::endl;
- return -1;
- }
- if (FLAGS_image == "" & FLAGS_image_list == "") {
- std::cerr << "--image or --image_list need to be defined" << std::endl;
- return -1;
- }
- // 加载模型
- PaddleX::Model model;
- model.Init(FLAGS_model_dir,
- FLAGS_use_gpu,
- FLAGS_use_trt,
- FLAGS_gpu_id,
- FLAGS_key,
- FLAGS_batch_size);
- // 进行预测
- double total_running_time_s = 0.0;
- double total_imread_time_s = 0.0;
- int imgs = 1;
- if (FLAGS_image_list != "") {
- std::ifstream inf(FLAGS_image_list);
- if (!inf) {
- std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
- return -1;
- }
- // 多batch预测
- std::string image_path;
- std::vector<std::string> image_paths;
- while (getline(inf, image_path)) {
- image_paths.push_back(image_path);
- }
- imgs = image_paths.size();
- for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
- auto start = system_clock::now();
- // 读图像
- int im_vec_size =
- std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
- std::vector<cv::Mat> im_vec(im_vec_size - i);
- std::vector<PaddleX::ClsResult> results(im_vec_size - i,
- PaddleX::ClsResult());
- int thread_num = std::min(FLAGS_thread_num, im_vec_size - i);
- #pragma omp parallel for num_threads(thread_num)
- for (int j = i; j < im_vec_size; ++j) {
- im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
- }
- auto imread_end = system_clock::now();
- model.predict(im_vec, &results, thread_num);
- auto imread_duration = duration_cast<microseconds>(imread_end - start);
- total_imread_time_s += static_cast<double>(imread_duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- auto end = system_clock::now();
- auto duration = duration_cast<microseconds>(end - start);
- total_running_time_s += static_cast<double>(duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- for (int j = i; j < im_vec_size; ++j) {
- std::cout << "Path:" << image_paths[j]
- << ", predict label: " << results[j - i].category
- << ", label_id:" << results[j - i].category_id
- << ", score: " << results[j - i].score << std::endl;
- }
- }
- } else {
- auto start = system_clock::now();
- PaddleX::ClsResult result;
- cv::Mat im = cv::imread(FLAGS_image, 1);
- model.predict(im, &result);
- auto end = system_clock::now();
- auto duration = duration_cast<microseconds>(end - start);
- total_running_time_s += static_cast<double>(duration.count()) *
- microseconds::period::num /
- microseconds::period::den;
- std::cout << "Predict label: " << result.category
- << ", label_id:" << result.category_id
- << ", score: " << result.score << std::endl;
- }
- std::cout << "Total running time: " << total_running_time_s
- << " s, average running time: " << total_running_time_s / imgs
- << " s/img, total read img time: " << total_imread_time_s
- << " s, average read time: " << total_imread_time_s / imgs
- << " s/img, batch_size = " << FLAGS_batch_size << std::endl;
- return 0;
- }
|