train.py 1.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 定义训练和验证时的transforms
  4. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
  5. train_transforms = T.Compose([
  6. T.RandomResizeByShort(
  7. short_sizes=[640, 672, 704, 736, 768, 800],
  8. max_size=1333,
  9. interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize(
  10. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  11. ])
  12. eval_transforms = T.Compose([
  13. T.ResizeByShort(
  14. short_size=800, max_size=1333, interp='CUBIC'), T.Normalize(
  15. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  16. ])
  17. # 定义训练和验证所用的数据集
  18. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/paddlex/cv/datasets/coco.py#L26
  19. train_dataset = pdx.datasets.CocoDetection(
  20. data_dir='dataset/JPEGImages',
  21. ann_file='dataset/train.json',
  22. transforms=train_transforms,
  23. shuffle=True,
  24. num_workers=0)
  25. eval_dataset = pdx.datasets.CocoDetection(
  26. data_dir='dataset/JPEGImages',
  27. ann_file='dataset/val.json',
  28. transforms=eval_transforms,
  29. num_workers=0)
  30. # 初始化模型,并进行训练
  31. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
  32. num_classes = len(train_dataset.labels)
  33. model = pdx.models.MaskRCNN(
  34. num_classes=num_classes, backbone='ResNet50', with_fpn=True)
  35. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L155
  36. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  37. model.train(
  38. num_epochs=12,
  39. train_dataset=train_dataset,
  40. train_batch_size=1,
  41. eval_dataset=eval_dataset,
  42. learning_rate=0.00125,
  43. lr_decay_epochs=[8, 11],
  44. warmup_steps=10,
  45. warmup_start_lr=0.0,
  46. save_dir='output/mask_rcnn_r50_fpn',
  47. use_vdl=True)