table_recognition.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from .utils import *
  16. from ..base import BasePipeline
  17. from ..ocr import OCRPipeline
  18. from ....utils import logging
  19. from ...components import CropByBoxes
  20. from ...results import OCRResult, TableResult, StructureTableResult
  21. class TableRecPipeline(BasePipeline):
  22. """Table Recognition Pipeline"""
  23. entities = "table_recognition"
  24. def __init__(
  25. self,
  26. layout_model,
  27. text_det_model,
  28. text_rec_model,
  29. table_model,
  30. layout_batch_size=1,
  31. text_det_batch_size=1,
  32. text_rec_batch_size=1,
  33. table_batch_size=1,
  34. predictor_kwargs=None,
  35. ):
  36. self.layout_model = layout_model
  37. self.text_det_model = text_det_model
  38. self.text_rec_model = text_rec_model
  39. self.table_model = table_model
  40. self.layout_batch_size = layout_batch_size
  41. self.text_det_batch_size = text_det_batch_size
  42. self.text_rec_batch_size = text_rec_batch_size
  43. self.table_batch_size = table_batch_size
  44. self.predictor_kwargs = predictor_kwargs
  45. super().__init__(predictor_kwargs=predictor_kwargs)
  46. self._build_predictor()
  47. # self.set_predictor(layout_batch_size, text_det_batch_size,text_rec_batch_size, table_batch_size)
  48. def _build_predictor(
  49. self,
  50. ):
  51. self.layout_predictor = self._create_model(model=self.layout_model)
  52. self.ocr_pipeline = OCRPipeline(
  53. text_det_model=self.text_det_model,
  54. text_rec_model=self.text_rec_model,
  55. text_det_batch_size=self.text_det_batch_size,
  56. text_rec_batch_size=self.text_rec_batch_size,
  57. predictor_kwargs=self.predictor_kwargs,
  58. )
  59. self.table_predictor = self._create_model(model=self.table_model)
  60. self._crop_by_boxes = CropByBoxes()
  61. self._match = TableMatch(filter_ocr_result=False)
  62. self.layout_predictor.set_predictor(batch_size=self.layout_batch_size)
  63. self.ocr_pipeline.text_rec_model.set_predictor(
  64. batch_size=self.text_rec_batch_size
  65. )
  66. self.table_predictor.set_predictor(batch_size=self.table_batch_size)
  67. def set_predictor(
  68. self,
  69. layout_batch_size=None,
  70. text_det_batch_size=None,
  71. text_rec_batch_size=None,
  72. table_batch_size=None,
  73. ):
  74. if text_det_batch_size and text_det_batch_size > 1:
  75. logging.warning(
  76. f"text det model only support batch_size=1 now,the setting of text_det_batch_size={text_det_batch_size} will not using! "
  77. )
  78. if layout_batch_size:
  79. self.layout_predictor.set_predictor(batch_size=layout_batch_size)
  80. if text_rec_batch_size:
  81. self.ocr_pipeline.rec_model.set_predictor(batch_size=text_rec_batch_size)
  82. if table_batch_size:
  83. self.table_predictor.set_predictor(batch_size=table_batch_size)
  84. def predict(self, x):
  85. for layout_pred, ocr_pred in zip(
  86. self.layout_predictor(x), self.ocr_pipeline(x)
  87. ):
  88. single_img_res = {
  89. "input_path": "",
  90. "layout_result": {},
  91. "ocr_result": {},
  92. "table_result": [],
  93. }
  94. # update layout result
  95. single_img_res["input_path"] = layout_pred["input_path"]
  96. single_img_res["layout_result"] = layout_pred
  97. subs_of_img = list(self._crop_by_boxes(layout_pred))
  98. # get cropped images with label "table"
  99. table_subs = []
  100. for sub in subs_of_img:
  101. box = sub["box"]
  102. if sub["label"].lower() == "table":
  103. table_subs.append(sub)
  104. _, ocr_res = self.get_related_ocr_result(box, ocr_pred)
  105. table_res, all_table_ocr_res = self.get_table_result(table_subs)
  106. for table_ocr_res in all_table_ocr_res:
  107. ocr_res["dt_polys"].extend(table_ocr_res["dt_polys"])
  108. ocr_res["rec_text"].extend(table_ocr_res["rec_text"])
  109. ocr_res["rec_score"].extend(table_ocr_res["rec_score"])
  110. single_img_res["table_result"] = table_res
  111. single_img_res["ocr_result"] = OCRResult(ocr_res)
  112. yield TableResult(single_img_res)
  113. def get_related_ocr_result(self, box, ocr_res):
  114. dt_polys_list = []
  115. rec_text_list = []
  116. score_list = []
  117. unmatched_ocr_res = {"dt_polys": [], "rec_text": [], "rec_score": []}
  118. unmatched_ocr_res["input_path"] = ocr_res["input_path"]
  119. for i, text_box in enumerate(ocr_res["dt_polys"]):
  120. text_box_area = convert_4point2rect(text_box)
  121. if is_inside(text_box_area, box):
  122. dt_polys_list.append(text_box)
  123. rec_text_list.append(ocr_res["rec_text"][i])
  124. score_list.append(ocr_res["rec_score"][i])
  125. else:
  126. unmatched_ocr_res["dt_polys"].append(text_box)
  127. unmatched_ocr_res["rec_text"].append(ocr_res["rec_text"][i])
  128. unmatched_ocr_res["rec_score"].append(ocr_res["rec_score"][i])
  129. return (dt_polys_list, rec_text_list, score_list), unmatched_ocr_res
  130. def get_table_result(self, input_imgs):
  131. table_res_list = []
  132. ocr_res_list = []
  133. table_index = 0
  134. img_list = [img["img"] for img in input_imgs]
  135. for input_img, table_pred, ocr_pred in zip(
  136. input_imgs, self.table_predictor(img_list), self.ocr_pipeline(img_list)
  137. ):
  138. single_table_box = table_pred["bbox"]
  139. ori_x, ori_y, _, _ = input_img["box"]
  140. ori_bbox_list = np.array(
  141. get_ori_coordinate_for_table(ori_x, ori_y, single_table_box),
  142. dtype=np.float32,
  143. )
  144. ori_ocr_bbox_list = np.array(
  145. get_ori_coordinate_for_table(ori_x, ori_y, ocr_pred["dt_polys"]),
  146. dtype=np.float32,
  147. )
  148. html_res = self._match(table_pred, ocr_pred)
  149. ocr_pred["dt_polys"] = ori_ocr_bbox_list
  150. table_res_list.append(
  151. StructureTableResult(
  152. {
  153. "input_path": input_img["input_path"],
  154. "layout_bbox": [int(x) for x in input_img["box"]],
  155. "bbox": ori_bbox_list,
  156. "img_idx": table_index,
  157. "html": html_res,
  158. }
  159. )
  160. )
  161. ocr_res_list.append(ocr_pred)
  162. table_index += 1
  163. return table_res_list, ocr_res_list